Development of Learning Media Assisted by Wordwall on the Material of Exponent for Phase E Students

Yoza Agrullina¹, Sri Rezeki², Agus Dahlia³, Sindi Amelia⁴

¹,²,⁴Mathematics Education Program, Universitas Islam Riau
Jalan Kaharuddin Nst No.113, Kota Pekanbaru, Riau, Indonesia
¹yozaagrullina@student.uir.ac.id; ²sri_rezeki@edu.uir.ac.id; ⁴sindiamelia88@edu.uir.ac.id
³Petroleum Engineering Program, Universitas Islam Riau
Jalan Kaharuddin Nst No.113, Kota Pekanbaru, Riau, Indonesia
³agus.dahlia@edu.uir.ac.id

Article received: 07-03-2023, revised: 20-09-2023, published: 30-10-2023

Abstract
Using Android as a learning medium allows students to access learning materials without space and time constraints. This research aims to develop a learning media assisted by Wordwall on the exponent material tested for validity and practicality so that teachers and students can use them in Phase E (Class X SMA). In developing this media, Research and Development (R&D) design, which Sugiyono modifies, is used with the stages of Potential and Problems, Data Collection, Product Design, Design Validation, Design Revision, Product Trial, Product Revision, and Final Product. The research subjects were 26 students in grade 10. The results of this study indicate that the learning media developed has an average validity of 91.91% with very valid criteria and an average practicality of 84.29% with practical criteria. Based on the results of this study, it can be concluded that learning media have been produced that are suitable for use because they have been tested for validity and practicality. Keywords: Android; Phase E; Media; Development; Wordwall.
I. INTRODUCTION

Rapid technological advancements have significantly influenced education in the contemporary era of globalization. Global demands drive this impact, necessitating continuous adaptation of educational practices to evolving technological developments, particularly within the context of learning (Budiman, 2017; Elyana, Wulandari, & Mulyani, 2022). Technologically-mediated learning facilitates enhanced teacher-student interactions in the classroom. Consequently, educators must be cognizant of temporal and resource constraints when integrating technology into the learning environment (Khairiyah Mar’aha et al., 2020). Furthermore, teachers should possess proficient skills in planning, developing, and utilizing instructional media to bolster students’ interest, attention, and motivation for learning (Yaumi, 2018; Ranila, Yunianta, & Prihatnani, 2023).

Given students' diverse levels of understanding and preparedness during their developmental stages, the methods and materials employed in teaching exponent number concepts can be tailored to accommodate individual variations. Notably, at the high school level, this mathematical material is typically covered in class 10 or phase E of the independent curriculum. Students at this stage are expected to generalize the properties of number operations involving powers.

Fundamentally, in the process of instructing on rank number concepts, educators often emphasize achieving curriculum targets, placing greater emphasis on rote memorization rather than fostering conceptual understanding. Additionally, learning activities predominantly adopt a teacher-centred approach through lecture methods instead of a more student-centred approach utilizing instructional media (Hamid, 2020). This tendency contributes to students’ challenges in grasping the conceptual intricacies of exponent numbers, leading to difficulties in solving problems related to exponent number properties.

The conventional teaching approach has led to a decline in students' interest and comprehension of the material. To address this issue, a game was designed to engage students in their studies. Wordwall emerged as a suitable learning medium due to its versatility, offering various learning methods and templates that enhance creativity and make the learning experience more captivating (Surahmawan et al., 2021). Wordwall, a digital platform, provides features like games and quizzes that educators can utilize for instructional purposes.

Wordwall as a learning medium has distinct advantages, including a range of engaging games accessible for free, such as quizzes, random wheels, anagrams, and more (Surahmawan et al., 2021). Prior research efforts by Sudarsono & Mulyani...
(2021) focused on employing the wordwall game for teaching odd numbers in mathematics. Rochmada & Suprayitno (2022) utilized wordwalls for social science education, specifically historical heritage materials. Pamungkas et al. (2021) applied the wordwall game to enhance students' learning motivation, and Divine et al. (2022) developed wordwall as an interactive tool to alleviate mathematics anxiety. These studies, conducted across various educational units, demonstrated the feasibility of Wordwall in increasing students' motivation, rendering it a valuable resource for teachers and students.

In this study, distinctions exist from prior research in terms of objectives, location, educational units, subjects, and the primary material addressed in the developed media. The chosen medium for this research is Wordwall. Given the abovementioned challenges, the research aims to develop a wordwall-assisted mathematics learning medium focused on eksponent material for Phase E students. The study involves testing the validity and practicality of the developed medium.

II. Method

The Research and Development (R&D) method was employed in this study. It was initially formulated by Sugiyono and subsequently adapted by the researchers. As delineated by Sugiyono (2014), research and development are a research approach designed to generate certain products and evaluate their efficacy. However, it is pertinent to note that in the present research, the developmental phase was confined to assessing the media's validity and practicality without delving into its overall effectiveness. The modified stages of research and development encompassed identification of potential and problems, data collection, product design, design validation, design revision, product testing, product revision, and the final product.

Wordwall-assisted learning media was applied with a cohort of 26 Class X students at SMA Negeri 4 Pekanbaru, Riau. The data collection methodologies incorporated in this research included interviews, observations, validity tests, and questionnaires. The instruments employed for data collection were carefully selected to ensure the thorough assessment of the developed Wordwall-assisted learning media. The data collections used are as follows:

1. Validation Sheet

The validation process was conducted by a media expert, a Mathematics Education Lecturer at FKIP UIR, and a subject matter expert, a mathematics teacher at SMA Negeri 4 Pekanbaru. The primary objective was to assess the wordwall-assisted learning media designed for Phase E students focusing on exponent material.
Observing Figure 1 reveals the application of the validation sheet to assess the media. This sheet encompasses three key aspects: content relevance, appropriateness of media, and linguistic proficiency.

2. Assessment of Media Practicality

An evaluation of the practicality of the learning media, specifically designed for Phase E students focusing on exponent material, was conducted through a practicality sheet. This assessment involved both teachers and students at SMA Negeri 4 Pekanbaru to gauge the effectiveness and suitability of the wordwall-assisted learning media.

Figure 1. Validation Sheet

Figure 2 illustrates the emphasis on practicality in media usage as reflected in the student and teacher response sheets.

Quantitative data was employed to ensure the efficacy of this research. The data collection process was executed organically to meet the research requirements without any alterations. The data collection methods encompassed interviews, validity tests, and the distribution of questionnaires focusing on practicality. The expert validation questionnaire implemented a modified Likert Scale as the measurement scale, detailed in Table 1 below.

Table 1. Modified Likert Scale

<table>
<thead>
<tr>
<th>No.</th>
<th>Quantitative Analysis</th>
<th>Statement Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>1</td>
<td>Strongly agree</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Agree</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Disagree</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Strongly disagree</td>
<td>1</td>
</tr>
</tbody>
</table>

Meanwhile, the analysis of questionnaire data on teacher and student
responses was conducted descriptively using quantitative methods, specifically through percentage assessments. The teacher and student response data were calculated.

<table>
<thead>
<tr>
<th>No.</th>
<th>Interval</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50,01% ≤ x < 70%</td>
<td>Less Valid/Practical, recommended for not being utilized because of major revision</td>
</tr>
<tr>
<td>4</td>
<td>01,00% ≤ x < 50%</td>
<td>Invalid/impractical, or must not be utilized</td>
</tr>
</tbody>
</table>

The technique employed to process the acquired data is quantitative descriptive analysis. The obtained data falls into the quantitative category, derived from the validity tests conducted by experts (Expert Testing). This quantitative data will be analyzed using quantitative methods, specifically by calculating the percentages. The formula utilized is:

\[
Score = \frac{\sum score \text{ obtained}}{\sum total \text{ score}} \times 100\%
\]

(Source: Sugiyono, 2011)

The results of the calculated data are converted into Table 5, allowing for the interpretation of the developed media's validity and practicality testing outcomes. The criteria employed for assessment are delineated in Table 5 as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Interval</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85,01% ≤ x ≤ 100%</td>
<td>Highly Valid/Practical or can be utilized without revision. Valid/Practical or can be utilized with minor revision</td>
</tr>
<tr>
<td>2</td>
<td>70,01% ≤ x < 85%</td>
<td>Highly Valid/Practical or can be utilized without revision. Valid/Practical or can be utilized with minor revision</td>
</tr>
</tbody>
</table>

III. RESULT AND DISCUSSION

A. Result

Drawing upon the researchers' modification of the Research and Development (R&D) model, the process of developing mathematics learning media is elucidated through the subsequent steps:

1) Potential and Problems

During this initial phase, the focus is on identifying potential and existing problems within the school environment, accomplished through interviews and observations. Findings from assessments at SMAN 4 Pekanbaru reveal the following observations:

a. Students already employ Android devices as learning tools.

b. Students exhibit reduced interest when learning activities solely involve blackboard explanations.

c. A variety of learning approaches leads to student boredom and diminished engagement.

d. Students struggle with grasping the concept of exponent numbers and face challenges in solving problems related to exponent number properties.
2) Data Collection
In this stage, researchers gather essential materials for developing mathematics learning media. Collected materials include Learning Outcomes (CP), Learning Objectives Flow (ATP), and Teaching Modules (MA) about Power Number content, aligned with the school's Merdeka Curriculum.

3) Product Design
a) Material Design
The material design phase involves sourcing teaching resources for topics related to numbers with powers. The content within the mathematics learning media aligns with the Teaching Module (MA) and adheres to the learning objectives specified in the Independent Curriculum adopted by SMAN 4 Pekanbaru. Figure 3 visually represents the material on exponent numbers and associated questions.

b) Designing Question
The design of questions related to the topic of exponent numbers comprises a total of 20 items. This set of questions was presented to the teachers at SMAN 4 Pekanbaru for evaluation, assessing their appropriateness for use by students at SMAN 4 Pekanbaru (refer to Figure 4).

c) Designing Wordwall
In the design of Wordwall, the initial steps involve determining the game template to be utilized, specifying the theme and duration, and crafting the questions to be presented. Based on Figure 5, several templates in Wordwall can be utilized for creating educational games.
In Figure 6, users can input questions along with images and corresponding answers that have been created. However, in this Wordwall game, the capability to input questions in fractions and radical expressions is not yet available.

Referring to Figure 7, it can be observed that various appealing themes are available for use in the learning process. Subsequently, after selecting a game theme, users can initiate the game based on the chosen template (refer to Figure 8). Following this, users can press the start button on the game, and the game will commence, as illustrated in Figure 9.

d) Designing Kodular

In designing Kodular, the initial steps involve specifying the background, button design, display layout, and font design (refer to Figure 10).

4) Design Validation

During the validation process of learning media, two Teacher Validators (VG) and two Lecturer Validators (VD) served as media experts. The evaluation of the validity of mathematics learning media utilizing Wordwall, conducted by these experts, covers material, media, and
language aspects. The detailed assessment is presented in Table 4 below:

<table>
<thead>
<tr>
<th>Validator</th>
<th>Aspect Assessed</th>
<th>Language (%)</th>
<th>Mean (%)</th>
<th>Validity Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG1</td>
<td>Material</td>
<td>64</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>VG2</td>
<td>Media</td>
<td>64</td>
<td>96</td>
<td>88</td>
</tr>
<tr>
<td>VD1</td>
<td>Language</td>
<td>52</td>
<td>92</td>
<td>88</td>
</tr>
<tr>
<td>VD2</td>
<td></td>
<td>64</td>
<td>108</td>
<td>96</td>
</tr>
</tbody>
</table>

Mean Total: 91.91

As depicted in Table 4, the comprehensive average validation score for mathematics learning media employing Wordwall, explicitly focusing on exponent material, is determined to be 91.91%. This places it within the "Very Valid" criteria. Despite the media being deemed suitable for use without revision, the researchers proceed with revisions in alignment with suggestions and criticisms provided by validators, aiming to enhance the quality of mathematics learning media utilizing Wordwall for rank number material.

5) Design Revision

Suggestions and evaluations addressed by validators are elucidated in the following table:

<table>
<thead>
<tr>
<th>Suggestions and Evaluation from Validators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the question in the first meeting with the HOTS</td>
</tr>
<tr>
<td>Use attractive themes and sounds to avoid boredom.</td>
</tr>
</tbody>
</table>

As seen from Table 5, the suggestions and evaluations from the validators focused on the questions and the theme used in the media.

6) Product Trial

Following the revision of the learning media, a limited test involves a small group examining teacher and student responses to the developed learning media. These trials aim to gauge the practicality of the media. The limited trial involved two mathematics subject teachers and 26 students from SMAN 4 Pekanbaru.
The practical outcomes are presented in Table 6 below:

<table>
<thead>
<tr>
<th>Questionnaire Response from Teacher (%)</th>
<th>Questionnaire Response from Student (%)</th>
<th>Mean (%)</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00</td>
<td>78.57</td>
<td>84.29</td>
<td>Practical</td>
</tr>
</tbody>
</table>

Table 6 outlines that the overall average practicality score for learning media utilizing Wordwall is 84.29%, categorizing it as "Practical."

7) Product Revision

The teacher and student response sheets analysis reveals a "Practical" category, signifying that the product is usable with minor revisions.

8) Final Product

Following the researchers' revisions, the final product materialized as mathematics learning media utilizing Wordwall for topics related to numbers with powers. The product was deemed suitable for use after comprehensive testing of its validity and practicality.

Throughout the developmental stages of this learning media, researchers encountered particular challenges, including:

1. During the Wordwall design phase, the absence of established rules for rendering mathematical equations necessitated screenshots, resulting in somewhat blurry formulas and images.

2. Limitations in the Wordwall platform prevented the presentation of all question formats, particularly essay questions, thus hindering the teacher's ability to observe the student's problem-solving process.

3. The scope of this research was confined to testing the validity and practicality of the media without delving into its overall effectiveness, owing to the constraints imposed by the research timeline.

4. The Wordwall platform proved inadequate for illustrating the concept of exponent numbers.

B. Discussion

The utilization of learning media in mathematics education at SMAN 4 Pekanbaru remains limited. According to teachers' observations, conventional or lecture methods persist in delivering learning content, potentially leading to student boredom and reduced engagement. Additionally, students encounter challenges in responding to questions in descriptive form, prompting the integration of multiple-choice questions for assistance. In response, researchers developed wordwall-assisted learning media to foster motivation and enthusiasm among students, thereby enhancing interest in mathematics within the classroom.

This wordwall-assisted learning media introduces diverse learning methods and templates, contributing to a more
engaging learning experience. Furthermore, it facilitates streamlined assessment for teachers, as students' assignment results are automatically forwarded. Notably, this learning media is compatible not only with smartphones but also with PC/Laptop platforms.

Upon completing the research, the developed media garnered suitability for teaching mathematics, specifically concerning numbers with powers. Media experts validated the product, yielding an average validity score of 91.91%, indicating its classification as "Very Valid." Consequently, the developed learning media is poised for further testing.

Limited trials involving 26 students yielded an overall average practicality level of 78.57%. To supplement student responses regarding media practicality, teacher opinions were solicited through a questionnaire, revealing an average practicality level of 90.00%. Combining both perspectives, an average practicality level of 84.29% was determined, aligning with the "Practical" criteria. Consequently, the mathematics learning media is deemed suitable for use, having undergone rigorous testing of its validity and practicality.

These research findings align with previous studies. Sudarsono & Mulyani (2021) reported increased test scores in elementary school mathematics learning through the wordwall game. Parisa et al. (2023) advocate for educational quizzes and games with Wordwalls as practical learning tools. Amiirah Faatin & Rusnilawati (2022) highlighted the positive impact of wordwall-based digital game learning media on students' motivation and learning success in integer operations. Divine et al. (2022) concluded that Wordwall games can alleviate students' anxiety levels during mathematics learning.

IV. CONCLUSION

In conclusion, the research findings and discussions affirm the successful development of mathematics learning media using Wordwall for Phase E students, focusing on rank number material. Given the rigorous testing of validity and practicality, this learning media is deemed suitable for use.

The researchers propose several recommendations on mathematics learning media, future researchers considering the utilization of Wordwall are advised to select materials that do not necessitate image screenshots for question creation. Subsequent research should explore and assess the effectiveness of the Wordwall application-based learning media developed in this study. Addressing the limitations of multiple-choice questions, it is recommended to conduct thorough testing of question validity and reliability. Acknowledging that the produced learning media exclusively pertains to Ranked Numbers, future research opportunities could involve creating learning media with
diverse materials and more captivating designs.

REFERENCES

Surahmawan, A. N. I., Arumawati, D. Y., Palupi, L. R., Widyaningrum, R., &

AUTHOR'S BIOGRAPHY

Yoza Agrullina.

Born in Banjar Padang on August 5, 2001, I am currently an undergraduate student pursuing a Bachelor's degree in Mathematics Education at the Faculty of Teacher Training and Education, Universitas Islam Riau in Pekanbaru.

Dr. Sri Rezeki, S.Pd., M.Si.

Agus Dahlia, M.Si.

Born in Pekanbaru on August 11, 1983, I am currently a faculty member at Universitas Islam Riau. I completed my Bachelor's degree in Mathematics at Universitas Riau, Pekanbaru, in 2007. Subsequently, I pursued my Master's degree in Mathematics at Universitas Indonesia, Depok, graduating in 2013.

Sindi Amelia, M.Pd.

Born in Kerinci on November 25, 1988, I am currently a faculty member at Universitas Islam Riau. I completed my Bachelor's degree in Mathematics Education at Universitas Riau, Pekanbaru, in 2010. Subsequently, I pursued my Master's degree in Mathematics Education at Universitas Pendidikan Indonesia, Bandung, graduating in 2012.