STUDENT’S METACOGNITION: DO INTRAPERSONAL INTELLIGENT MAKE ANY DIFFERENCE?

Nur Rokhima, Harina Fitriyani

Abstract


Abstrak

Metakognisi adalah kesadaran seseorang tentang proses berpikirnya untuk merencanakan, mengamati, dan mengevaluasi. Selain itu, kecerdasan siswa memiliki peran penting untuk menyelesaikan masalah. Tujuan dari penelitian ini adalah untuk mengetahui proses metakognitif siswa dalam rangka menyelesaikan masalah matematika yang ditinjau dari kecerdasan intrapersonal mereka. Penelitian ini menggunakan pendekatan deskriptif kualitatif. Subyek ini terdiri dari tiga jenis siswa yang memiliki kecerdasan intrapersonal tinggi, rata-rata, dan rendah. Instrumen yang digunakan adalah kuesioner, tes pemecahan masalah matematika (TPMM) dan wawancara. Data dianalisis dengan menggunakan reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa subjek yang memiliki kecerdasan intrapersonal tinggi dalam menyelesaikan masalah matematika melakukan perencanaan, pengamatan, dan evaluasi kegiatan di setiap tahap polya. Subyek intelijen interpersonal rata-rata berada di tahap memahami masalah, mengatur dan menerapkan rencana pemecahan masalah. Mereka telah melakukan semua kegiatan metakognitif, tetapi tidak melakukan perencanaan, mengamati, dan mengevaluasi kegiatan di tahap crosschecking. Subjek kecerdasan intrapersonal rendah berada di tahap memahami masalah, perencanaan, pengamatan, dan evaluasi. Namun, dalam mengatur penyelesaian masalah, mereka hanya melakukan perencanaan dan pengamatan tanpa mengevaluasi. Dalam tahap menerapkan rencana pemecahan masalah, mereka hanya melakukan perencanaan tanpa mengamati dan mengevaluasi. Selain itu, mereka tidak melakukan kegiatan metakognitif dalam tahap evaluasi.

 

Abstract

Metacognition is the awareness of someone about his thinking process in order to plan, observe, and evaluate. Besides, the student’s intelligence has an important role to accomplish the problem. The objective of this research is to know the students’ metacognitive process in order to accomplish mathematic problem reviewed from their intrapersonal intelligence. This research used descriptive qualitative approach. The subject consists of three kinds of students who have high, average, and low intrapersonal intelligence. The instruments are questionnaire, mathematic problem solving test (TPMM) and interview. The data were analyzed by using reduction of data, presentation of data, and conclusion. The result showed that the subject who has high intrapersonal intelligence in accomplishing the mathematic problem did planning, observing, and evaluating activities in every polya stage. The average interpersonal intelligence subject was in the stage of understanding the problem, arranging and implementing the problem solving plan. They had done all metacognitive activities, but did not do planning, observing, and evaluating activities in the crosschecking stage. The low intrapersonal intelligence subject was in the stage of understanding the problem, planning, observing, and evaluating. However, in arranging the problem solving, they only did planning and observing without evaluating. In the stage of implementing the problem solving plan, they only did the planning without observing and evaluating. In addition, they did not do metacognitive activities in the evaluation stage.


Keywords


Metacognition; Mathematic Problem Solving; Intrapersonal Intelligence; Metakognisi; Pemecahan Masalah Matematis; Kecerdasan Intrapersonal

Full Text:

PDF

References


Abdullah, A.H., & Zakaria, E. (2013). Enhancing Students’ Level of Geometric Thinking through Van Hiele’s Phase-based learning. Indian Journal of Science and Technology. 6(5), 4432-4446.

Ahmad Rofli, et al. (2018). Characteristics of Student’s Metacognition Process at Informal Deduction Thingking Level In Geometry Problems. International Journal on Emerging Mathematics Education, 2(1), 88-104.

Armstrong, T. (2000). Multiple intelligences in the classroom. Virginia, USA: Association of Supervision and Curriculum Development.

Chairani, Zahra. 2016. Metakognisi Siswa dalam Pemecahan Masalah Matematika. Yogyakarta: Deepublish.

Dummett, C. W. (2006). Successful pedagogies for an Australian multicultural classroom. International Education Journal, 7(5), 778-789.

Efendi, Fitri Mares. 2015. Hubungan antara Kecerdasan Intrapersonal dengan Prestasi Belajar Siswa Kelas IV SD se-Gugus I Kecamatan Srandakan Bantul Yogyakarta Tahun Ajaran 2014/2015. Retrieved from http://eprints.uny.ac.id/26468/ on November 19, 2016.

Foong, P.Y. & Ee, J. (2002). Enhancing the learning of underachievers in mathematics. ASCD Review, 11(2), 25-35.

In’am, A. (2012). A metacognitive Approach to Solving Algebra Problem. International Journal of Independent Research and Studies, 1(4), 162-173.

In’am, A. (2016). Euclidean Geometry's Problem-solving Based on Metacognitive in Aspect of Awareness. IEJME-Mathematics Education, 11(4), 961-974.

Kafoussi, S. (2013). Elementary Students’ Spontaneous Metacognitive Function Different Type of Mathematical Problems. Journal Research in Mathematics Education (Online), 2(2), 242-267.

Karan, E.P., & Irizarry, J. (2011). Effects of Metacognitive strategies on Problem Solving Ability in Construction Education. Proceedings of the 50th ASC Annual International Conference, Retrieved from http://www.ascpro.ascweb.org

Kuzle, A. (2011). Pattern of Metacognitive Behavior During Mathematics Problem Solving in a Dynamic Geometry Environment. International Electronic Journal Of Mathematics Education, 8(1), 20-40.

Latifah L.N. (2010). Pengaruh Model Pembelajaran Kooperatif Tipe Co-Op Co-Op terhadap Peningkatan Berpikir Kritis dan Ketuntasan Belajar Matematika Siswa SMA Bandung. Doctoral Dissertation. Bandung: UPI.

Laurens, Theresia. 2009. Penjenjangan Metakognisi Siswa. Disertasi. Program Pascasarjana Universitas Negeri Surabaya.

Livingstone, J.L. (1997). Metacognition: An Overview (On Line), Retrieved from http://www.gse.buffalo.edu/fas

Matlin, M. (1998). Cognition. Philadelphia: Harcourt Brace College Publisher.

Miles and Huberman. (2014). Analisis Data Kualitatif Buku Sumber Tentang Metode – Metode Baru. Jakarta: UI- Press.

Nurulwahida and Aizan. (2016). Enriching Orphans’ Potentials through Interpersonal and Intrapersonal Intelligence Enrichment Activities. International Journal of Instruction. 9(1) January 2016

Pajru, Khoirul R.S. (2014). Metakognisi Peserta Didik Dalam Memecahkan Masalah Matematika di Kelas XI SMA NU 01 Al Hidayah Kendal. Retrieved from http://eprints.walisongo.ac.id/4192/ on November 19, 2016

Panaoura, A. (2009). An Intervention to the Metacognitive Performance: Self-Regulation In Mathematics and Mathematical Modeling. Acta Didactica Universitatis Comenianae Mathematics (online), 9, 63-79.

Pierce, W. (2003). Metacognition: Study strategies, monitoring and motivating. A workshop paper presented at Prince George’s Community College. Retrieved from http://academic.pg.cc.md.us//

Polya. (1973). How to solve it. New Jersey: Princeton University Press.

Purnomo, D., Nusantara, T., Subanji, & Rahardjo, S. (2016). Metacognition Process Characteristics of the Students in Solving Mathematics Problems. IOSR Journal of Research and Education (IOSR-JRME), 6(5), 26-35.

Purnomo, D., Nusantara, T., Subanji, & Rahardjo, S. (2017). The Characteristic of the Process of Students’ Metacognition in Solving Calculus Problems. International Education Studies, 10(5), 13-25.

Sellars, Maura. (2006). The Role Of Intrapersonal Intellegence in self Directed Learning. Issues In Educational Research, Vol 16. 2006.

Sellars, Maura. (2008). Intelligence for the 21st Century: A Discussion of Intrapersonal and Emotional Intelligences. International Journal of Learning, 15(2), 79-87.

Suherman, E. (2001). Strategi Pembelajaran Matematika Kontemporer. Bandung: JICA-Universitas Pendidikan Indonesia.

Weldana, H.N. (2014). Gender Position and High School Student’s attainment in Local Geometry. International Journal of Science and Mathematics Education, 13(6), 1331–1354

Wilson, J., & Clarke, D. (2004). Toward the Modelling of Mathematical Metacognition. Mathematics Education Research Journal, 16(2), 25-48.

Yeo, J.K.K. (2004). An exploratory study of secondary two students’ mathematics anxiety and mathematical problem solving. Doctoral Dissertation. Singapore: National Institute of Education.




DOI: https://doi.org/10.31980/mosharafa.v7i2.36

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Mosharafa: Jurnal Pendidikan Matematika

Indexed by:

 

Creative Commons License
Mosharafa: Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

 

View My Stats