Proses Berpikir Siswa dalam Memperbaiki Kesalahan Generalisasi Pola Linier

Yayan Eryk Setiawan

Abstract


Abstrak

Masih banyak kesalahan yang dilakukan oleh siswa dalam menggeneralisasi pola linier yang disebabkan fokus pada data numerik. Siswa-siswa yang mengalami kesalahan ini penting diberikan kesempatan kembali untuk memperbaiki kesalahan dalam menggeneralisasi pola linier. Untuk itu, tujuan penelitian ini adalah menganalisis proses berpikir siswa dalam memperbaiki kesalahan generalisasi pola linier. Sesuai dengan tujuan penelitian tersebut, maka penelitian ini merupakan penelitian kualitatif deskriptif dengan pendekatan studi kasus terhadap 2 siswa kelas VIII sekolah menengah pertama yang berhasil memperbaiki kesalahan generalisasi pola linier. Hasil penelitian menunjukkan bahwa terdapat dua jenis proses berpikir dalam memperbaiki kesalahan generalisasi pola linier, yaitu memperbaiki dengan menguji dan mencoba, serta memperbaiki dengan mengganti strategi generalisasi. Proses memperbaiki dengan menguji dan mencoba terdiri dari tiga tahap, yaitu: tahap mencari beda, tahap menguji, dan tahap mencoba. Proses memperbaiki dengan mengganti strategi generalisasi terdiri dari tiga tahap, yaitu: tahap mencari beda, tahap mengganti strategi generalisasi, dan tahap menemukan rumus suku ke-n. Cara yang paling efektif untuk memperbaiki kesalahan generalisasi pola linier adalah dengan cara mengganti strategi.

 

Students Thinking Processes in Correcting Errors of Linear Pattern Generalization

Abstract

There are still many mistakes made by students in generalizing linear patterns due to the focus on numerical data. It is important for students who experience this error to be given another opportunity to correct errors in generalizing linear patterns. For this reason, the purpose of this study is to analyze students' thought processes in correcting errors in the generalization of linear patterns. By the objectives of this study, this research is a descriptive qualitative study with a case study approach to 2 students of class VIII junior high school who succeeded in correcting errors in the generalization of linear patterns. The results showed that there are two types of thought processes in correcting errors in the generalization of linear patterns, namely repairing by testing and trying, and improving by replacing generalization strategies. The process of improving by testing and trying consists of three stages, namely: the stage of finding a difference, the testing stage, and the trying stage. The process of improving by replacing the generalization strategy consists of three stages, namely: the stage of finding a difference, the stage of changing the generalization strategy, and the stage of finding the formula for the nth term. The most effective way to correct linear pattern generalization errors is by changing strategies.


Keywords


Generalization of Linear Patterns; Correcting Errors; Thinking Process; Generalisasi Pola Linier; Memperbaiki Kesalahan; Proses Berpikir

Full Text:

PDF

References


Afriansyah, E. A. (2014). Addition and Substraction Numbers up to 10 through PMRI for SD/MI Level Students. International Postgraduate Colloqium of Research in Education 3rd IPCoRE.

Becker, J. R., & Rivera, F. (2005). Generalization Strategies of Beginning High School Algebra Students. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 121–128). Melbourne: PME.

Billings, E. M. H., Tiedt, T. L., & Slater, L. H. (2007). Algebraic Thinking Pictorial Growth Patterns. Teaching Children Mathematics, 14(5), 302–308.

Blanton, M. L., & Kaput, J. J. (2008). Building District Capacity for Teacher Development in Algebraic Reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 361–388). New York, London: Taylor & Francis Group, LLC.

Chua, B. L. (2009). Features of Generalising Tasks Help or Hardle to Expressing Generality? Amt, 65(2), 18–24.

Creswell, J. W. (2012). Educational Research Planning, Conducting and Evaluating Quantitative and Qualitative Research (Fourth). Boston: Pearson Education, Inc.

Ellis, A. B. (2007a). A Taxonomy for Categorizing Generalizations : Generalizing Actions and Reflection Generalizations. Journal of the Learning Sciences, 16(2), 37–41.

Ellis, A. B. (2007b). The Influence of Reasoning with Emergent Quantities on Students’ Generalizations. Cognition and Instruction, 25(4), 439–478.

Ellis, A. B. (2011a). Algebra in the Middle School : Developing Functional Relationships Through Quantitative Reasoning. In E. Knuth, J. Cai (Ed.), Early Algebraization, Advances in Mathematics Education (pp. 215–216). USA: Springer-Verlag Berlin Heidelberg.

Ellis, A. B. (2011b). Generalizing-Promoting Actions : How Classroom Collaborations Can Support Students ’ Mathematical Generalizations. Journal for Research in Mathematics Education, 42(4), 308–345.

Ellis, A., Tillema, E., Lockwood, E., & Moore, K. (2017). Generalization Across Domains: The Relating-Forming-Extending Generalization Framework. In J. Galindo, E., & Newton (Ed.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 677–684). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.

Hourigan, M., & Leavy, A. (2015). Geometric Growing Patterns: What’s the rule? APMC, 20(4), 31–40.

Lannin, J., Barker, D., & Townsend, B. (2006). Algebraic Generalisation Strategies : Factors Influencing Student Strategy Selection Prior Research on Generalisation. Mathematics Education Research Journal, 18(3), 3–28.

Lestariningsih, L., Nurhayati, E., & Cicinidia, C. (2020). Jenis Proses Berpikir Peserta Didik dalam Menyelesaikan Soal Literasi Matematis. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 83-94.

Mayasari, Y., & Afriansyah, E. A. (2016). Kemampuan Koneksi Matematis Siswa melalui Model Pembelajaran Berbasis Masalah (Studi Penelitian di SMP Negeri 5 Garut). Jurnal Riset Pendidikan, 2(01), 27-44.

Mulligan, J. (2010). Reconceptualising early mathematics learning. In Teaching Mathematics? Make it Count: What Research Tells Us About Effective Teaching and Learning of Mathematics (pp. 47–52).

Mulligan, J., & Mitchelmore, M. (2009). Awareness of Pattern and Structure in Early Mathematical Development. Mathematics Education Research Journal, 21(2), 33–49.

NCTM. (2000). Principles and Standards for School Mathematics. United States of America: The National Council of Teachers of Mathematics, Inc.

Nurmawanti, I., & Sulandra, I. M. (2020). Exploring of Student’s Algebraic Thinking Process Through Pattern Generalization using Similarity or Proximity Perception. Mosharafa: Jurnal Pendidikan Matematika, 9(2), 191-202.

Rismen, S., Mardiyah, A., & Puspita, E. M. (2020). Analisis Kemampuan Penalaran dan Komunikasi Matematis Siswa. Mosharafa: Jurnal Pendidikan Matematika, 9(2), 263-274.

Rivera, F. (2015). The Distributed Nature of Pattern Generalization. PNA, 9(3), 165–191.

Septiahani, A., Melisari, M., & Zanthy, L. S. (2020). Analisis Kesalahan Siswa SMK dalam Menyelesaikan Soal Materi Barisan dan Deret. Mosharafa: Jurnal Pendidikan Matematika, 9(2), 311-322.

Setiawan, Y. E. (2019). Pembelajaran Pola Bilangan. Lumajang: CV. Al-Mukmin Yes.

Setiawan, Y. E. (2020a). Analisis Kemampuan Siswa dalam Pembuktian Kesebangunan Dua Segitiga. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 8(1), 23–38.

Setiawan, Y. E. (2020b). Analisis Kesalahan Siswa dalam Menilai Kebenaran Suatu Pernyataan. Jurnal Didaktik Matematika, 7(1), 13–31.

Setiawan, Y. E. (2020c). Sistem Pendukung Pengambilan Keputusan Rekrutmen Guru Menggunakan Logika Fuzzy Tahani. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 14(2), 259–272.

Setiawan, Y. E. (2020d). The Thinking Process of Students Using Trial and Error Strategies in Generalizing Linear Patterns. Numerical: Jurnal Matematika Dan Pendidikan Matematika, 4(1), 1–12.

Setiawan, Y. E., & Mustangin. (2020). Validitas Model Pembelajaran IDEA ( Issue, Discussion, Establish, and Apply) untuk Meningkatkan Pemahaman Konsep. Jurnal Penelitian Pendidikan Dan Pengajaran Matematika, 6(1), 53–60.

Setiawan, Y. E., Purwanto, Parta, I. N., & Sisworo. (2020). Generalization Strategy of Linear Patterns From Field-Dependent Cognitive Style. Journal on Mathematics Education, 11(1), 77–94.

Setiawan, Y. E., & Syaifuddin. (2020). Peningkatan Kompetensi Profesionalitas Guru Melalui Pelatihan Desain Pembelajaran Peta Konsep. Jurnal Pengabdian Kepada Masyarakat, 26(3), 148–153.

Tanişli, D., & Özdaş, A. (2009). The Strategies of Using the Generalizing Patterns of the Primary School 5 th Grade Students. Educational Sciences: Theory and Practice, 9(3), 1485–1497.




DOI: https://doi.org/10.31980/mosharafa.v9i3.751

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mosharafa: Jurnal Pendidikan Matematika

Indexed by:

 

Creative Commons License
Mosharafa: Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

 

View My Stats