
 
 209 
 

DOI: https://doi.org/10.31980/plusminus.v5i2.3018 

Mapping Cognitive Load and Thinking Zones in Understanding 
Function Limits 

 

Rina Oktaviyanthi1*, Ria Noviana Agus2 
1*,2Mathematics Education, Universitas Serang Raya 

Taman Drangong, Serang, Indonesia 
1*rinaokta@unsera.ac.id; 2riaagus@unsera.ac.id 

 
 

ABSTRAK  ABSTRACT 

Penelitian ini merespons terbatasnya kajian yang 

memetakan pola berpikir siswa berdasarkan beban dan 

zona kognitif dalam memahami limit fungsi secara 

grafis. Dengan menggunakan teori beban kognitif dan 

klasifikasi zona (risiko, tantangan, optimal), enam 

mahasiswa dipilih secara purposif dalam studi kasus 

kualitatif untuk mewakili variasi kemampuan. Data 

berupa respons tertulis dan think-aloud dianalisis untuk 

menelusuri transisi zona kognitif. Hasil menunjukkan 

pola kognitif yang beragam, dari miskonsepsi hingga 

integrasi konseptual. Beban tinggi dapat dikelola melalui 

regulasi diri, sedangkan beban rendah tetap berisiko jika 

struktur pemahaman belum berkembang. Studi ini 

menekankan pentingnya instruksi adaptif berdasarkan 

profil kognitif mahasiswa dan menawarkan kerangka 

zona berpikir untuk mendukung pembelajaran 

matematika yang personal. 

Kata Kunci: Beban kognitif; limit fungsi; pola kognitif; 

regulasi metakognitif; zona berpikir. 

This study addresses the limited research mapping 

students’ thinking patterns through cognitive load and 

cognitive zones in understanding function limits 

graphically. Using Cognitive Load Theory and the 

classification of risk, challenge, and optimal zones, six 

first-year mathematics education students were 

purposively selected in a qualitative case study to 

represent varying academic abilities. Data from written 

responses and think-aloud protocols were analyzed to 

trace zone transitions. Findings showed diverse cognitive 

patterns, from misconceptions to successful conceptual 

integration. High cognitive load was manageable through 

self-regulation, while low load still poses risks if the 

understanding structure is undeveloped. The study 

highlights the importance of adaptive instruction aligned 

with students’ cognitive profiles and offers a thinking 

zone framework to support personalized mathematics 

learning. 
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1. INTRODUCTION 

Mathematics learning is a cognitively demanding process that requires not only content 

understanding but also effective cognitive regulation (Petričević et al., 2022; Seufert et al., 2024). 

One key factor influencing this process is cognitive load, which refers to the mental effort needed 

to process and retain information during learning. In mathematics, high cognitive load can hinder 

performance due to the abstract and multi-step nature of problem-solving (Barbieri & Rodrigues, 

2025; Lepore, 2024). Researchers have emphasized the importance of managing cognitive load 

to support learning outcomes. This has led to the development of instructional strategies aimed 

at balancing task complexity and student capacity. 

Despite this focus, little is known about the detailed cognitive patterns that emerge 

during mathematics learning, especially how cognitive load interacts with internal thinking zones. 

Cognitive zones refer to mental states or stages learners experience, such as confusion, effortful 

thinking, and fluent understanding (Lodge et al., 2018; Phan & Ngu, 2021). This framing of 

thinking zones can be grounded in Vygotsky’s Zone of Proximal Development, which suggests 

that learners move between different levels of competence depending on the support and 

challenge they face (Doolittle, 1997; Xi & Lantolf, 2021). Thinking zones, such as risk, challenge, 

and optimal, can be seen as cognitive manifestations of this developmental space. These zones 

may correspond to varying levels of cognitive load and influence the quality of mathematical 

reasoning. Prior research using tools like neuroimaging has explored brain activation during 

learning, but has yet to fully connect these insights with how students experience and transition 

through cognitive zones (Schacter, 2025; Zadina, 2023). Understanding these dynamics is 

essential for designing learning environments that support cognitive clarity. 

There remains a significant gap in linking specific levels of cognitive load with transitions 

between cognitive zones during problem-solving in mathematics. Most studies treat cognitive 

load as static and do not consider how it fluctuates across stages of learning or between students 

(Krieglstein et al., 2023; Skulmowski & Xu, 2021). However, in reality, cognitive load is not fixed, 

it changes dynamically as learners shift between confusion, effort, and understanding, especially 

in complex topics like function limits. This dynamic nature is crucial because static models fail to 

capture how students regulate thinking in real-time, a feature that is often overlooked in 

traditional CLT-based studies in calculus. The lack of individualized mapping obscures how 

different learners respond to the same mathematical task (Wang & Lehman, 2021; Younger et al., 

2024). Moreover, little is known about how shifts between zones, such as from confusion to 

clarity, are reflected in students’ responses (Cross Francis et al., 2022; Li & Lajoie, 2022). 

Addressing this gap requires a more granular method of tracking cognitive transitions alongside 

load intensity. 
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This study aims to investigate cognitive pattern recognition in mathematics learning by 

mapping cognitive load and identifying students’ thinking zones. Specifically, it explores how 

first-year mathematics education students respond to graphical limit problems, a topic known 

for high conceptual demand. Through written responses and cognitive analysis, students’ 

transitions across zones such as risk, challenge, and optimal will be tracked. The goal is to identify 

cognitive patterns associated with successful or unsuccessful problem-solving. Unlike previous 

studies that focus on cognitive load as a singular measure, this research emphasizes the shifting 

interplay between mental effort and reasoning quality. This understanding will support the 

design of more responsive, cognitively informed instruction. 

In summary, the study bridges cognitive load theory with cognitive pattern analysis to 

visualize how learners engage with mathematical concepts. By tracing how students think and 

transition between zones during problem-solving, the research highlights the interplay between 

cognitive effort and reasoning quality. Findings will inform strategies for reducing unproductive 

cognitive load and enhancing conceptual understanding. Ultimately, this study contributes a new 

perspective to mathematics education by offering a framework to recognize and support 

students’ cognitive states. The results have practical implications for adaptive learning and 

cognitive scaffolding in mathematics instruction. 

 

2. METHOD 

This study employed a descriptive qualitative approach grounded in an in-depth analysis 

of students’ cognitive patterns (Azungah, 2018; Elliott & Timulak, 2021). The primary aim was to 

identify cognitive strategies used in solving mathematical problems involving graphical 

representations of functions, as well as to map the levels of cognitive load and the thinking zones 

experienced by each subject. The research design adopted the principles of single-case pattern 

recognition with cross-subject comparisons (Kratochwill et al., 2021; Shen et al., 2023), focusing 

on capturing the cognitive processes within the context of specific mathematical tasks. 

Six first-year mathematics education students were purposively selected, representing 

diverse academic backgrounds and varying levels of self-confidence. Academic diversity was 

based on GPA distribution (ranging from 2.75 to 3.90) and classroom performance. The sample 

size (n = 6) follows the principle of qualitative saturation, which suggests that meaningful 

cognitive themes in homogenous groups can emerge with 6 to 12 participants (Braun & Clarke, 

2021; Hennink & Kaiser, 2022). The inclusion criteria were as follows: (1) the ability to read and 

interpret function graphs, (2) prior exposure to the concepts of limits and function values, and (3) 

willingness to participate in think-aloud interviews. 

Three primary instruments were used in this study. First, cognitive stimulation tasks in 

the form of graph-based problems were designed to elicit students’ reasoning processes, 
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particularly their conceptual understanding of discontinuities and limits. These tasks included 

questions such as determining the value of 𝑓(2) and lim𝑥→2 𝑓(𝑥), aiming to trigger potential 

conflicts between the concept of function values and limit values (Oktaviyanthi et al., 2024). The full 

set of tasks is provided in Appendix A, and a sample item is shown in the enhanced Figure 1. 

Second, a semi-structured interview guide combined with a think-aloud protocol was employed 

to capture students’ verbalized cognitive processes during task completion (Wolcott & 

Lobczowski, 2021). The guiding questions encouraged students to articulate their reasoning, 

explain their interpretation of the graph, reflect on their understanding of limits, and express their 

confidence in their answers. Third, a cognitive pattern coding sheet was developed to 

systematically analyze the responses (Boyer et al., 2005). This tool allowed the researcher to 

examine student behavior and categorize their cognitive states based on five key dimensions: 

initial response, graph identification, conceptual understanding of limits, confidence, and final 

conclusion. 

 

Figure 1. Sample Cognitive Stimulation 

Data collection followed a four-step process. First, each subject was individually 

presented with a graphical mathematics problem and instructed to solve it while thinking aloud. 

This think-aloud process was video and audio-recorded for accuracy. Second, the entire session 

was transcribed verbatim to capture all verbal expressions, pauses, and cognitive cues. Third, 

follow-up interviews were conducted to clarify or probe deeper into students’ cognitive 

strategies, especially when unclear or ambiguous reasoning appeared in the initial transcripts. 

Finally, all data were organized and prepared for analysis using a cognitive pattern recognition 

framework. 
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The data analysis in this study followed a multi-phase approach, beginning with transcript 

reduction to isolate relevant verbal indicators linked to students’ interpretation of the graph, 

their understanding of limits, and the formulation of conclusions. This was followed by cognitive 

coding, which categorized each student’s thinking processes into specific cognitive zones. To 

classify responses, the researchers developed a zone-based coding scheme across five cognitive 

aspects: initial response, graph identification, conceptual understanding of limits, confidence, and 

final conclusion. Each aspect was aligned with three possible cognitive zones: Risk (Red), 

Challenge (Yellow), and Optimal (Green), based on the observable indicators expressed by the 

subjects. This coding structure is shown in Table 1. Each descriptor in Table 1 serves as an 

operational definition derived from observable verbal and behavioral indicators during problem-

solving. Following the cognitive zone classification, each student's responses was mapped to 

observe transitions between zones. These transitions were used to assess the intensity and 

direction of cognitive effort, as well as to visualize patterns of cognitive movement (e.g., from risk 

to challenge, or from challenge to optimal). The strength of these transitions was later visualized 

in schematic maps using colored and weighted arrows. 

Table 1. Cognitive Zone Coding for Each Cognitive Aspect 

Aspect Risk Zone (Red) Challenge Zone (Yellow) Optimal Zone (Green) 

Initial 

Response 

Confused; unable to 

start 
Hesitant understanding 

Calm, immediate 

understanding 

Graph 

Identification 

Misinterprets key 

points or direction 

Partial recognition with 

uncertainty 

Accurately identifies relevant 

points quickly 

Concept of 

Limit 

Fails to distinguish 

limit from function 

value 

Mixed understanding, 

needs clarification 

Understands limit as 

approaching from both sides 

Confidence 
Uncertain, highly 

hesitant 

Somewhat confident, still 

unsure 
Highly confident and logical 

Final 

Conclusion 

Incomplete or 

incorrect reasoning 

Tentative but partially 

supported answer 

Logically derived and well 

justified answer 

In addition to zone transitions, students’ cognitive load levels were inferred by 

evaluating their dominant cognitive zones, frequency of conceptual confusion, degree of 

hesitation, and presence of regressive thinking patterns (Oktaviyanthi, Agus, Garcia, et al., 2024). 

Based on these indicators, cognitive load was categorized into low, moderate, and high. To 

strengthen validity, two trained raters independently coded the transcripts, and discrepancies 

were discussed until consensus was reached. Inter-rater reliability reached a Cohen’s Kappa of 

0.87, indicating a high level of agreement in zone classification. 

Table 2. Cognitive Load Categories and Associated Indicators 

Cognitive Load Level Indicators 

Low Dominantly in the optimal zone, no confusion, high confidence 
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Cognitive Load Level Indicators 

Moderate 
Mixed presence of challenge and risk zones, occasional 

uncertainty 

High 
Risk zone dominant, frequent misconceptions, unstable or 

regressive reasoning 

 

3. RESULT AND DISCUSSION 

This study focused on recognizing and mapping students’ cognitive patterns in solving 

problems involving graphical representations of functions, specifically related to the concepts of 

function value and limit. The main instrument was a single graph-based question designed to 

induce a conceptual conflict between 𝑓(2) and lim𝑥→2 𝑓(𝑥), thus eliciting varying degrees of 

cognitive load across subjects. Data were collected through a combination of think-aloud 

protocols, semi-structured interviews, and cognitive coding sheets. The analysis focused on five 

key aspects: (1) initial response to the problem, (2) graph identification, (3) understanding of the 

limit concept, (4) confidence in the answer, and (5) final conclusion. In addition, cognitive zones 

were mapped as well as an estimation of each subject’s cognitive load. 

To further explore the cognitive dynamics of each participant, this section presents a 

detailed cognitive profile for each subject based on their responses, verbal narratives, and zone 

transitions during problem-solving. These individual profiles are structured into tables that 

summarize the student's answers, analytic reflections, and the sequence of cognitive zone 

transitions. The analysis provides insight into how students navigated conceptual conflict, 

managed cognitive load, and moved between the Risk, Challenge, and Optimal Zones during the 

graph-based limit task. 

Subject 1 – From Challenge to Risk Zone due to Schematic Gap 

Table 3. Cognitive Profile of Subject 1 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    

𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) =   

(not clearly 

answered, 

misunderstood) 

“I don’t quite understand the question. The graph 

is clear, but I’m confused about what to find.” 

[Challenge Zone] 

“At 𝒙 = 𝟐, there’s a point at 𝒚 = 𝟑, so I think 

𝒇(𝟐) = 𝟑.” [Correct Identification] 

“But the question also asks for the limit, and I 

don’t really understand how that’s different from 

the function value at that point.” [Conceptual 

Confusion], [Risk Zone] 

  Challenge Zone → 

  Risk Zone 

Subject 1 demonstrated confusion in understanding the question’s intent, despite 

finding the graph visually clear. This suggests that the subject was operating within the Challenge 

Zone, attempting to process the information but struggling to link it with the intended concept. 

Although the subject correctly identified that 𝑓(2) = 3, they failed to comprehend the distinction 
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between function value and limit. When asked to determine lim𝑥→2 𝑓(𝑥), the subject did not 

engage in further analysis, such as tracing the graph from the left and right, but remained stuck 

in initial confusion. This condition reflects a shift from the Challenge Zone to the Risk Zone, where 

the thinking process halts due to unresolved conceptual conflict. Although misconceptions were 

present, there were no signs of intense mental stress or anxiety, suggesting that the cognitive 

load was low. The subject’s difficulties stemmed not from task complexity, but from a 

fundamental lack of understanding regarding the concept of limits. 

Subject 2 – Reflective Fluctuation Between Challenge and Risk Zones 

Table 4. Cognitive Profile of Subject 2 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    

𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) = 𝟑   

(misconception) 

“From what I see, when 𝒙 = 𝟐, there’s a point at 

𝒚 = 𝟑, so I think 𝒇(𝟐) = 𝟑.” [Correct Identification] 

“But the question also asks for the limit, and I’m 

not too sure about that. Maybe the limit is the same 

as the function value.” [Misconception], [Risk Zone] 

“I know this might not be entirely correct, but 

that’s what I can conclude from the graph.” 

[Hesitation], [Challenge Zone] 

  Challenge Zone → 

  Risk Zone →   

Challenge Zone 

Subject 2 began the task with an attempt to interpret the graph, albeit with noticeable 

hesitation. The subject correctly identified that 𝑓(2) = 3, indicating a sound understanding of 

function value. However, when determining lim𝑥→2 𝑓(𝑥), they incorrectly concluded that the limit 

equals the function value. This reflects a common misconception and places the subject in the 

Risk Zone, where incorrect conceptual understanding is taken as a final answer. Interestingly, the 

subject expressed doubt about the accuracy of their response, suggesting some level of 

metacognitive reflection. This points to a return to the Challenge Zone, where the subject 

attempted a reevaluation, despite continued uncertainty. The fluctuation between misconception 

and reflection, along with conscious doubt, indicates a moderate cognitive load. The subject was 

not in a state of complete confusion but also did not reach accurate conceptual understanding. 

Subject 3 – Cognitive Regulation Amid High Load 

Table 5. Cognitive Profile of Subject 3 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    

𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) = 𝟕    

“I find this question quite complex because there’s 

a lot of information to process from the graph.” 

[Risk Zone] 

“After looking at it in detail, I can see that the 

function’s value at 𝒙 = 𝟐 is 3, since there’s a point 

there.” [Correct Identification] 

“From this, I’m confident that 𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) is 

  Risk Zone →   

Challenge Zone →   

Optimal Zone →   

Challenge Zone 
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Student’s Answer Analytical Narrative Zone Transition 

actually 7, as that’s the value the graph 

approaches.” [Accurate Analysis], [Optimal Zone] 

Subject 3 initially perceived the graph as complex, indicating that they began in the Risk 

Zone due to early cognitive overload or fatigue. However, the subject was able to self-regulate 

and proceed with a more structured analysis. They accurately concluded that 𝑓(2) = 3 and 

lim𝑥→2 𝑓(𝑥) = 7, demonstrating a strong grasp of limit concepts. Their thinking pattern 

transitioned from the Risk Zone to the Challenge Zone, ultimately reaching the Optimal Zone as 

they successfully integrated graphical data with conceptual understanding. Notably, the subject 

reconfirmed their analysis with confidence, reflecting cognitive stability while remaining in an 

active, reflective mode (returning to the Challenge Zone). These zone fluctuations suggest that, 

although the subject experienced a high cognitive load, it was effectively managed through 

reanalysis and validation strategies, resulting in complete conceptual understanding. 

Subject 4 – Stability in Optimal Zone with Minimal Load 

Table 6. Cognitive Profile of Subject 4 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    

𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) = 𝟕    

“This question is quite easy for me, and the graph is 

clear.” [Optimal Zone] 

“I can immediately see that 𝒇(𝟐) = 𝟑 because the 

point at 𝒙 = 𝟐 is at 𝒚 = 𝟑.” 

“I see that the graph approaches 𝒚 = 𝟕 from both 

directions.” [Accurate Limit Concept] 

  Optimal Zone 

Subject 4 showed immediate comprehension of the task and swiftly identified both 

𝑓(2) = 3  and lim𝑥→2 𝑓(𝑥) = 7 correctly. Their responses reflected high cognitive stability in both 

conceptual clarity and confidence. The entire thinking process remained within the Optimal Zone, 

with no observed transitions to other zones. There were no signs of confusion, hesitation, or 

logical errors that would suggest cognitive strain. This indicates a low cognitive load, as the 

subject was able to process the information efficiently and accurately without significant barriers. 

Subject 6 – Optimal Zone with Moderate Load Due to Metacognitive Awareness 

Table 7. Cognitive Profile of Subject 6 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    

𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) = 𝟕    

“I feel focused enough to solve this question without 

feeling too pressured.” 

“Looking at the graph, I can quickly see that the 

function value at 𝒙 = 𝟐 is 3 because there’s a point 

there.” 

“For the limit, I notice the graph approaches 𝒚 = 𝟕 

as x approaches 2 from both sides.” [Optimal Zone] 

  Optimal Zone 
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Subject 6 completed the task smoothly and demonstrated accurate understanding of the 

graph, including correct conclusions for 𝑓(2) = 3 and lim𝑥→2 𝑓(𝑥) = 7. The entire thinking 

process was stable and uninterrupted, consistently placing the subject in the Optimal Zone. Unlike 

Subject 4, however, Subject 6 expressed metacognitive awareness through comments about 

being focused and not feeling pressured. This indicates active cognitive control over their thought 

processes, rather than automatic comprehension. As a result, although the subject was in the 

same zone, their cognitive load was considered moderate due to conscious efforts in monitoring 

and managing their cognitive processing. 

Subject 10 – Emotional Entrapment and Unstable Zone Transition 

Table 8. Cognitive Profile of Subject 10 

Student’s Answer Analytical Narrative Zone Transition 

𝒇(𝟐) = 𝟑    
𝐥𝐢𝐦𝒙→𝟐 𝒇(𝒙) = 𝟕 

  (with hesitation) 

“This question makes me dizzy because the graph is 

a bit confusing.” [Risk Zone] 

“I see there’s a point at y= 𝟑 when 𝒙 = 𝟐, so 

maybe 𝒇(𝟐) = 𝟑?” 

“Since the graph seems to rise toward 7… maybe 

the limit is 7? I’m not too sure.” [Challenge Zone] 

  Risk Zone →   

Challenge Zone 

Subject 10 began with responses indicating mental pressure caused by the perceived 

complexity of the graph, as revealed by their statement that the task made them feel “dizzy.” 

This placed the subject in the Risk Zone, where high initial cognitive load hindered interpretive 

efforts. Despite this, the subject attempted to answer by concluding that 𝑓(2) = 3 and tentatively 

suggesting that lim𝑥→2 𝑓(𝑥) = 7, though with evident uncertainty. This effort marked a transition 

to the Challenge Zone, as the subject tried to engage further with the information despite 

persistent doubts. The instability in their reasoning process and the high degree of uncertainty in 

conceptual inference suggest a high cognitive load, indicating the need for conceptual scaffolding 

or intervention to stabilize their cognitive processing. 

Across the six subjects, several cognitive patterns were identified. First, all participants 

correctly identified the function value f(2), indicating that recognizing a point on a graph was a 

relatively low-load task. However, variation emerged in how students interpreted the concept of 

limits. Subjects 1 and 2 struggled due to undeveloped conceptual structures, with both 

demonstrating transitions into the Risk Zone—one staying there (S1) and the other fluctuating 

(S2). Subject 3 began with high cognitive load but successfully regulated it, transitioning to the 

Optimal Zone through deliberate reasoning. Subject 4 remained consistently in the Optimal Zone, 

showing automatic processing with low load, while Subject 6 demonstrated similar 

understanding with metacognitive engagement, hence experiencing moderate load. Subject 10 

exemplified emotional interference, starting in the Risk Zone and failing to stabilize in the 

Challenge Zone. Overall, the most successful responses occurred when students could manage 
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cognitive load through reflection and schema activation. Conversely, students with undeveloped 

understanding or emotional overload struggled to shift into productive zones. These patterns 

illustrate that cognitive success in limit problems depends not just on knowledge but also on 

regulatory strategies and zone mobility. 

 

Subject 1 initially attempted to understand the task but failed to grasp the concept of 

limits due to the absence of an operational schema distinguishing function values from limits. 

Although the graph was clear, the subject transitioned from the Challenge Zone to the Risk Zone, 

reflecting unresolved conceptual confusion. Based on Cognitive Load Theory (Sweller, 2011, 

2020, 2022), the subject experienced low intrinsic and germane load, supporting Novak’s view 

that misconceptions often stem from indistinct conceptual boundaries rather than explicit errors 

(Novak, 2002; Uher, 2021). Subject 2 showed uncertainty but remained engaged, making the 

common error of equating the limit with the function value. However, metacognitive awareness 

emerged as they questioned their answer. This shift from the Risk Zone back to the Challenge 

Zone suggests learning potential within Vygotsky’s (Fletcher, 2024; Seufert, 2018) Zone of 

Proximal Development. Moderate cognitive load arose from the effort to self-regulate and 

reflect. Subject 3 perceived the task as complex but successfully used internal regulation 

strategies to reach accurate conclusions, transitioning through the Risk, Challenge, and Optimal 

Zones. Their high cognitive load was effectively managed through germane load, illustrating 

executive control (Friedman & Robbins, 2021) and productive schema construction (Chen et al., 

2023). This suggests that success under high cognitive load is not only possible but dependent 

on learners’ ability to monitor, regulate, and restructure their thinking processes, key principles 

emphasized in adaptive interpretations of CLT (Rosa et al., 2025; Van Merriënboer & Sweller, 

2010). 

Subject 4 worked accurately and effortlessly within the Optimal Zone, indicating minimal 

cognitive load and well-developed schemata for limits and function values. This aligns with 

Bruner’s (Bruner & Haste, 2010; Bryce & Blown, 2024) concept of symbolic representation and 

reflects the profile of a mature, cognitively stable learner. Subject 6, despite reaching similar 

conclusions as Subject 4, demonstrated active metacognition by reflecting on their thinking state. 

This placed them in the Optimal Zone with moderate cognitive load, as their self-monitoring 

added germane load (Sweller, 2018, 2022), supporting long-term learning. Subject 10 reported 

feeling “dizzy” from the graph, signaling extraneous load. While correctly identifying 𝑓(2), 

they remained uncertain about the limit, shifting from the Risk to the Challenge Zone without 

reaching full understanding. This indicates unmanaged high cognitive load, confirming that 

emotional stress can intensify cognitive burden in the absence of regulatory strategies. This 

aligns with CLT’s assertion that extraneous elements, such as unclear representations, can 
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overload working memory and inhibit schema development (Barbieri & Rodrigues, 2025; Van 

Merriënboer & Sweller, 2010). Instructionally, such learners benefit from scaffolding and 

conceptual visualization to stabilize their thinking. 

This study reveals a variety of thinking patterns and cognitive loads among students 

solving limit problems based on function graphs. Each subject exhibited different dynamics of 

cognitive zones, ranging from the Risk Zone (high confusion), the Challenge Zone (active 

thinking), to the Optimal Zone (stable understanding). These findings address the central 

research question: How are cognitive load and cognitive zone patterns formed as students solve 

limit problems using graphs? Subjects 4 and 6, who operated in the Optimal Zone, completed the 

task with strong and confident understanding. Conversely, Subjects 1 and 10 showed zone 

instability and high cognitive load that hindered information processing. The zone transition 

patterns, as seen in Subjects 2 and 3, demonstrate that shifting between zones is not a sign of 

failure but part of active regulation in thinking (Block, 2023; Hayes & Hofmann, 2021). These 

patterns indicate that internalizing the concept of limits depends heavily on initial schematic 

structures, cognitive regulation, and reactions to task-related pressure (Champ et al., 2022). 

Misconceptions, such as equating function value with limit, emerged in subjects who failed to 

navigate from Risk to Optimal Zone. 

These findings reinforce earlier research that immature schematic structures lead to 

misconceptions about limits and continuity (Guerra-Reyes et al., 2024). However, this study 

offers new insights beyond binary correct/incorrect outcomes by analyzing zone transitions and 

cognitive dynamics. In contrast to findings suggesting that high cognitive load usually impedes 

performance (Sinha & Kapur, 2021),  the case of Subject 3 illustrates how regulation strategies 

can transform high load into productive reasoning. This supports a more nuanced interpretation 

of CLT, one that sees germane load and cognitive regulation as mediators of success under 

demanding conditions. Moreover, it is important to acknowledge that cognitive load levels in this 

study were inferred qualitatively, based on behavioral cues, verbal reports, and zone transitions, 

rather than measured through standardized instruments. While these indicators align with CLT 

principles (Sweller, 2011, 2020), they remain interpretive in nature. Additionally, the small 

sample size (n = 6), while allowing for deep cognitive mapping, limits generalizability. Therefore, 

the results should be viewed as exploratory insights, paving the way for future studies that 

employ quantitative measures or physiological data (e.g., eye tracking, EEG) to validate cognitive 

load more objectively. 

In sum, this study contributes to the theoretical integration of cognitive load theory with 

cognitive zone mapping, emphasizing how students regulate their cognitive states during high-

concept mathematics tasks. On a practical level, the findings suggest that adaptive instruction, 

based on students’ cognitive trajectories, could enhance mathematics learning. Educators can 
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use zone diagnostics to identify students in the Risk Zone, offer scaffolded support, and visualize 

transitions to foster metacognitive awareness and conceptual clarity. 

 

4. CONCLUSION 

This study reveals that students’ cognitive patterns in understanding the concept of 

function limits through graphical representations vary significantly and are influenced by 

transitions between thinking zones: Risk Zone, Challenge Zone, and Optimal Zone, as well as the 

levels of cognitive load involved. Participants who demonstrated stable understanding were 

situated in the Optimal Zone with low cognitive load, whereas those who experienced mental 

pressure and misconceptions moved between zones with varying intensity. Transition patterns 

such as risk–challenge–optimal illustrate that thinking dynamics are not linear, but are shaped 

by students’ cognitive regulation abilities and existing schematic structures. These findings 

affirm that high cognitive load does not always lead to negative outcomes, especially when 

accompanied by reprocessing strategies and metacognitive awareness. The findings are specific 

to students’ reasoning in solving limit function problems, and therefore, should not be 

generalized to all mathematics topics. The implications of this research highlight the importance 

of designing adaptive learning approaches based on students’ cognitive zones to optimize limit 

concept comprehension. It also suggests the development of formative assessments that not 

only evaluate final outcomes but also map the thinking process. Future studies could explore 

different function types, such as continuity or asymptotic behavior, and include students from 

various educational levels. Additionally, integrating neurocognitive tools like EEG may provide 

objective insights into the validation of cognitive zones and transitions. 
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Appendix A – Graph-Based Cognitive Stimulation Tasks 

Task 1: Understanding Function Values vs. Limits 

The following graph shows the function 𝑓(𝑥). Study the graph carefully and answer the questions. 

 
Questions: 

1. What is the value of 𝑓(2)? 

2. What is lim
𝑥→2

𝑓(2)? 

3. Is 𝑓(𝑥) continuous at 𝑥 = 2? Explain why or why not. 

4. Describe how the graph helps you determine the answers above. 

 

Task 2: Left and Right Limits 

Observe the graph of 𝑔(𝑥) below. 

 
Questions: 

1. Find lim
𝑥→0−

𝑔(𝑥) and lim
𝑥→0+

𝑔(𝑥). 

2. Does lim
𝑥→0

𝑔(𝑥) exist? Why or why not? 

3. If 𝑔(0) = 1, does that affect the existence of the limit? Explain. 

 

Task 3: Identifying Types of Discontinuities 

Observe the graph below, which represents a piecewise function. The graph shows two different paths 

approaching the point 𝑥 = 𝑐 from the left and right. A straight line 𝑦 = 𝑥 is also shown as a reference. 
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Questions: 

1. Based on the graph, estimate the values of lim
𝑥→𝑐−

𝑓(𝑥) and lim
𝑥→𝑐+

𝑓(𝑥). Explain your reasoning 

using the direction of approach. 

2. If the function is defined such that 𝑓(𝑐) = 𝑐, is the function continuous at 𝑥 = 𝑐? Why or why 

not? 

3. If there is a discontinuity, identify its type (removable, jump, or infinite discontinuity) and explain 

how you determined this from the graph. 

4. What modification would be necessary to make the function continuous at 𝑥 = 𝑐? 

 

 


