Kajian Etnomatematika Pola Batik Keraton Surakarta Melalui Analisis Simetri

Kajian Etnomatematika Pola Batik Keraton Surakarta Melalui Analisis Simetri

Maria Glory Astriandini, Yosep Dwi Kristanto

Abstract


Abstrak

Etnomatematika memberikan peluang pengkajian batik dari dua sudut pandang, yaitu kebudayaan dan matematika. Kajian seperti ini akan memberikan dampak yang positif dalam pembelajaran matematika karena peserta didik difasilitasi untuk belajar matematika dengan menggunakan pengetahuan budaya yang relevan dan berbagai macam cara berpikir tentang matematika. Tujuan penelitian ini adalah untuk melakukan kajian etnomatematika pada batik Keraton Surakarta yang digunakan dalam upacara tradisi dengan menggunakan analisis simetri. Metode penelitian yang digunakan dalam penelitian ini adalah metode kualitatif deskriptif. Dari hasil analisis diperoleh 11 batik yang memiliki pola simetri. Pola simetri yang muncul dari kesebelas batik tersebut adalah p1, p2, p4m, dan pgg. Selain itu, penelitian ini juga memasangkan pola-pola simetri tersebut dengan makna filosofis batik-batiknya. Dengan demikian, melalui kajian etnomatematika, penelitian ini memberikan kontribusi pedagogis terhadap pembelajaran matematika.

Kata Kunci: batik, etnomatematika, kristalografi, simetri

 

Abstract

Ethnomatematics provides opportunities to study batik from two perspectives, namely culture and mathematics. The study will have a positive impact on mathematics teaching and learning because students are facilitated to learn mathematics by using relevant cultural knowledge and various ways of thinking about mathematics. The purpose of the present study is to conduct an ethnomathematics study on the Keraton Surakarta batik which is used in traditional ceremonies by applying symmetry analysis. The present study employed a descriptive qualitative method. From the analysis, we found that 11 batiks have symmetry patterns. The symmetry patterns are p1, p2, p4m, dan pgg. Besides, the present study also connects the symmetry patterns with the corresponding batik’s philosophical meaning. Therefore, through ethnomathematics, the present study gives pedagogical contributions to mathematics teaching and learning.

Keyword: batik, ethnomathematics, crystallography, simmetry

Keywords


batik; etnomatematika; kristalografi; simetri; ethnomathematics; crystallography; symmetry

Full Text:

PDF

References


‘Adna, S. F., Nasution, N. B., & Mardhiyana, D. (2020). Numbers sequence in batik Jlamprang motif of Pekalongan. Journal of Physics: Conference Series, 1663, 012011.

Albanese, V., Adamuz-Povedano, N., & Bracho-López, R. (2017). The Evolution of Ethnomathematics: Two Theoretical Views and Two Approaches to Education. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 307–328).

Barton, B. (1996). Making sense of ethnomathematics: Ethnomathematics is making sense. Educational Studies in Mathematics, 31(1–2), 201–233.

Chao, G. T., & Moon, H. (2005). The Cultural Mosaic: A Metatheory for Understanding the Complexity of Culture. Journal of Applied Psychology, 90(6), 1128–1140.

Crowe, D. J. (2004). Introduction to the plane symmetries. In D. K. Washburn & D. W. Crowe (Eds.), Symmetry Comes of Age: The Role of Pattern in Culture (pp. 3–17). University of Washington Press.

D’Ambrosio, U. (2012). The program ethnomathematics: Theoretical basis and the dynamics of cultural encounters. Cosmopolis, a Review of Cosmopolitics, 3–4, 13–41.

Dewita, A., Mujib, A., & Siregar, H. (2019). Studi Etnomatematika tentang Bagas Godang sebagai Unsur Budaya Mandailing di Sumatera Utara. Mosharafa: Jurnal Pendidikan Matematika, 8(1), 1–12.

Faiziyah, N., Khoirunnisa’, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, Rustamaji, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720, 012013.

Garnadi, A. D., Guritman, S., Kusnanto, A., & Hanum, F. (2012). Survey Pola Grup Kristalogi Bidang Ragam Batik Tradisional. Journal of Mathematics and Its Applications, 11(2), 1.

Gravemeijer, K., & Doorman, M. (1999). Context Problems in Realistic Mathematics Education: A Calculus Course as an Example. Educational Studies in Mathematics, 39, 111–129.

Hoogland, K., de Koning, J., Bakker, A., Pepin, B. E. U., & Gravemeijer, K. (2018). Changing representation in contextual mathematical problems from descriptive to depictive: The effect on students’ performance. Studies in Educational Evaluation, 58, 122–131.

Kristanto, Y. D. (2018). Modul Guru: Mengupayakan Diskursus dan Penalaran Matematis dengan Desmos. Figshare.

Kristanto, Y. D. (2019). Creating Interactive and Mathematically Rich Activity with Desmos. Figshare.

Leikin, R., Berman, A., & Zaslavsky, O. (2000). Learning through teaching: The case of symmetry. Mathematics Education Research Journal, 12(1), 18–36.

Lisnani, L. (2019). Pengaruh Penggunaan Konteks Daun terhadap Hasil Belajar Siswa. Mosharafa: Jurnal Pendidikan Matematika, 8(3), 423-434.

Lisnani, L., Zulkardi, Z., Putri, R. I. I., & Somakim, S. (2020). Etnomatematika: Pengenalan Bangun Datar Melalui Konteks Museum Negeri Sumatera Selatan Balaputera Dewa. Mosharafa: Jurnal Pendidikan Matematika, 9(3), 359-370.

Manuel, H., Hāwera, N., & Taylor, M. (2015). Transformation geometry: Mā te nekehanga, mā te whakaata, mā te hurihanga. In R. Averill (Ed.), Mathematics and Statistics in the Middle Years: Evidence and Practice (pp. 131–145). NZCER Press.

Maulidya, T. I., & Sihombing, R. V. (2018). Pola Kristalografi Bidang Ragam Batik di Yogyakarta. Prosiding Sendika, 82–98.

Meyer, D. D. (2020). Social and Creative Classrooms. Mathematics Teacher: Learning and Teaching PK-12, 113(3), 249–250.

Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative Data Analysis: A Methods Sourcebook (3rd ed.). SAGE.

Mulyani, E., & Natalliasari, I. (2020). Eksplorasi Etnomatematik Batik Sukapura. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 131–142.

Muslim, S. R., & Prabawati, M. N. (2020). Studi Etnomatematika terhadap Para Pengrajin Payung Geulis Tasikmalaya Jawa Barat. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 59–70.

Nanang, N., & Sukandar, A. (2020). Meningkatkan Kemampuan Siswa SDIT Miftahul Ulum Pada Operasi Bilangan Bulat Melalui CAI-Contextual. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 71-82.

Orey, D. C., & Rosa, M. (2020). Positionality and Creating Dialogue in Nepal: Connecting Ethnomathematics and Modelling - the Importance of Place Through Ethnomodelling. Social Inquiry: Journal of Social Science Research, 2(1), 82–103.

Pujiyanto, P. (2013). Fenomena Desain Batik Surakarta dan Yogyakarta. Gelar: Jurnal Seni Budaya, 11(1), 68–86.

Rosa, M., & Gavarrete, M. E. (2017). An Ethnomathematics Overview: An Introduction. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 3–19). Springer.

Rosa, M., & Orey, D. C. (2015). Ethnomathematics: connecting cultural aspects of mathematics through culturally relevant pedagogy. Mathematics Education & Society, 8(3), 887–897.

Sandelowski, M. (2000). Whatever happened to qualitative description? Research in Nursing & Health, 23(4), 334–340.

Sari, H. M., & Afriansyah, E. A. (2020). Analisis Miskonsepsi Siswa SMP pada Materi Operasi Hitung Bentuk Aljabar. Mosharafa: Jurnal Pendidikan Matematika, 9(3), 439-450.

Sawatzki, C., Downton, A., & Cheeseman, J. (2019). Stimulating proportional reasoning through questions of finance and fairness. Mathematics Education Research Journal, 31(4), 465–484.

Trinick, T., Meaney, T., & Fairhall, U. (2017). Cultural and Mathematical Symmetry in Māori Meeting Houses (Wharenui). In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 235–255). Springer.

UNESCO. (2009). Decision of the Intergovernmental Committee: 4.COM 13.44.

Van den Heuvel-Panhuizen, M. (2005). The Role of Contexts in Assessment Problems in Mathematics. For the Learning of Mathematics, 25(2), 2–9.

Washburn, D. (1999). Perceptual Anthropology: The Cultural Salience of Symmetry. American Anthropologist, 101(3), 547–562.

Washburn, D., & Humphrey, D. (2001). Symmetries in the Mind: Production, Perception, and Preference for Seven One-Dimensional Patterns. Visual Arts Research, 27(2), 57–68.

Zbiek, R. M., & Conner, A. (2006). Beyond Motivation: Exploring Mathematical Modeling as A Context for Deepening Students’ Understandings of Curricular Mathematics. Educational Studies in Mathematics, 63(1), 89–112.




DOI: https://doi.org/10.31980/mosharafa.v10i1.831

Refbacks



Copyright (c) 2021 Mosharafa: Jurnal Pendidikan Matematika

Indexed by:

 

Creative Commons License
Mosharafa: Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

 

View My Stats