Studi Etnomatematika terhadap Para Pengrajin Payung Geulis Tasikmalaya Jawa Barat

Siska Ryane Muslim, Mega Nur Prabawati

Abstract


Abstrak

Penelitian dilatarbelakangi pertentangan opini mengenai hubungan matematika dengan budaya, yang mengarah pada ethnomathematics. Tujuan penelitian untuk mengetahui serta mendeskripsikan etnomatematika pada pembuatan Payung Geulis Tasikmalaya. Metode penelitian yaitu kualitatif dengan metode etnografi. Subjek penelitian dipilih melalui metode purposive sampling, yaitu tiga orang pengrajin Payung Geulis yang berada di Panyingkiran, Indihiang, Kota Tasikmalaya serta telah menjadi pengrajin selama lebih dari 10 tahun. Teknik pengumpulan data yaitu dengan observasi, wawancara dan dokumentasi. Instrumen penelitian yaitu peneliti sendiri dengan didukung beberapa instrumen lainnya yaitu pedoman observasi, pedoman wawancara, alat rekam dan kamera. Teknik analisis data yang digunakan dalam penelitian ini yaitu reduksi data, penyajian data dan menarik kesimpulan atau verifikasi. Berdasarkan hasil analisis data, disimpulkan bahwa terdapat kaitan antara Payung Geulis dengan matematika yang ditunjukkan dengan adanya unsur-unsur matematika berdasarkan konsep geometri. Konsep geometri tersebut diantaranya berupa geometri bangun datar, geometri bangun ruang, simetri, geometri transformasi (refleksi, translasi, dan rotasi) serta kekongruenan.

 

Ethnomathematics Study of Payung Geulis Craftmans Tasikmalaya

 

Abstract

Research is motivated by conflicting opinions about the relationship between mathematics and culture, which leads to ethnomathematics. This research aims to determine and describe ethnomathematics in the manufacture of Tasikmalaya Geulis Umbrellas. The research method is qualitative with ethnographic methods. The subjects in this study were selected using a purposive sampling method where the subject was a Payulis Geulis craftsman in Panyingkiran, Indihiang, Tasikmalaya City and had been a craftsman for more than 10 years. Data collection techniques used are observation, interview, and documentation. The research instrument was the researcher himself, supported by several other instruments, namely observation guidelines, interview guidelines, recording equipment, and cameras. Data analysis techniques used in this study are data reduction, data presentation and drawing conclusions or verification. Based on the results of data analysis, it was concluded that there is a relationship between Umbrella Geulis with mathematics which is indicated by the existence of mathematical elements based on the concept of geometry. The geometrical concepts include the geometry of the flat structure, geometry of geometry, symmetry, the geometry of transformation (reflection, translation, and rotation) and concordance.


Keywords


Payung Geulis; Geometry; Ethnomathematic; Payung Geulis; Geometri; Etnomatematika.

Full Text:

PDF

References


Afriansyah, E. A. (2013). Penjumlahan Bilangan Desimal Melalui Permainan Roda Desimal. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, 233-240.

Afriansyah, E. A. (2014). Addition and Substraction Numbers up to 10 through PMRI for SD/MI Level Students. International Postgraduate Colloqium of Research in Education 3rd IPCoRE 2014 Universitas Pendidikan Indonesia.

Afriansyah, E. A. (2015). Students' Misconception in Decimal Numbers. International Seminar on Teacher Education 1st ISTE UIN Suska Riau.

Afriansyah, E. A. (2016). Enhancing Mathematical Problem Posing via Realistic Approach. International Seminar on Mathematics, Science, and Computer Science Education MSCEIS.

Alangui, W. V. (2010). Stone Walls and Water Flows: Interrogating Cultural Practice and Mathematics. (Disertasi). Mathematics Education, University of Auckland, New Zealand.

Arisetyawan, A., Suryadi, D., Herman, T., & Rahmat, C. (2014). Study of Ethnomathematics: A Lesson from Baduy Culture. International Journal of Education and Research, 2(10), 681-688.

Atmanto, E. Y. (2008). Metode Studi Kasus dalam Penelitian. Bandung: Erlangga

Barton, B. (1996). Ethnomathematics: Exploring Cultural Diversity in Mathematics. Unpublished doctoral dissertation, University of Auckland, Auckland, New Zealand.

D'Ambrosio, U., & Ascher, M. (1994). Ethnomathematics: A Dialogue. For the Learning of Mathematics, 14 (2), 36-43.

Dewita, A., Mujib, A., & Siregar, H. (2019). Studi Etnomatematika tentang Bagas Godang sebagai Unsur Budaya Mandailing di Sumatera Utara. Mosharafa: Jurnal Pendidikan Matematika, 8(1), 1-12. DOI: https://doi.org/10.31980/mosharafa.v8i1.202

Mulyo, M. R. G. T., Sari, A. F., & Syarifuddin, A. (2019). Proses Berpikir Siswa Bergaya Kognitif Visualizer dalam Menyelesaikan Masalah TIMSS Non Geometri. Mosharafa: Jurnal Pendidikan Matematika, 8(1), 167-178. DOI: https://doi.org/10.31980/mosharafa.v8i1.435

Paraide, P. (2008). Number in the Tolai Culture. Contemporary PNG Studies DWU Research Journal, 9(2), 69-77.

Puspadewi, K. R., & Putra, I. G. N. N. (2014). Etnomatematika di Balik Kerajinan Anyaman Bali. Jurnal Matematika, 4(2).

Sholihah, S. Z., & Afriansyah, E. A. (2017). Analisis Kesulitan Siswa dalam Proses Pemecahan Masalah Geometri Berdasarkan Tahapan Berpikir Van Hiele. Mosharafa: Jurnal Pendidikan Matematika, 6(2), 287-298. DOI: https://doi.org/10.31980/mosharafa.v6i2.317

Siregar, N. (2016). Meninjau Kemampuan Penalaran Matematis Siswa SMP melalui Wawancara Berbasis Tugas Geometri. Mosharafa: Jurnal Pendidikan Matematika, 5(2), 128-137. DOI: https://doi.org/10.31980/mosharafa.v5i2.268

Sugiyono. (2015). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif, dan R&D). Bandung: Alfabeta.

Suherman, E. (2012). Belajar dan Pembelajaran Matematika. Bandung: Universitas Pendidikan Indonesia.

Sumardianta, J. (2013). Mempersoalkan Kurikulum 2013. [Online]. Diakses dari www.tempo.co/read/kolom/2013/03/15/658/Mempersoalkan-Kurikulum-2013.

Sumardyono. (2008). Karakteristik Matematika dan Implikasinya terhadap Pembelajaran Matematika. Yogyakarta: Depdiknas.

Sundawan, M. D., Irmawan, W., & Sulaiman, H. (2019). Kemampuan Berpikir Relasional Abstrak Calon Guru Matematika dalam Menyelesaikan Soal-Soal Non-Rutin pada Topik Geometri Non-Euclid. Mosharafa: Jurnal Pendidikan Matematika, 8(2), 319-330. DOI: https://doi.org/10.31980/mosharafa.v8i2.438

Turmudi. (2009). Landasan Filsafat dan Teori Pembelajaran Matematika (Berparadigma Eksploratif dan Investigatif). Jakarta Pusat: Leuser Cita Pustaka.




DOI: https://doi.org/10.31980/mosharafa.v9i1.628

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mosharafa: Jurnal Pendidikan Matematika

Indexed by:

 

Creative Commons License
Mosharafa: Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

 

View My Stats