Virtual Assistant untuk Prediksi Kepribadian Mahasiswa dalam Memilih Karir Berkelanjutan
DOI:
https://doi.org/10.31980/petik.v8i2.1261Keywords:
Careers, Higher Education, Personality, Prediction, Virtual AssistantAbstract
Abstract — Memilih karir yang baik penting dilakukan sejak dini saat Anda masih kuliah. Karir yang baik akan membantu harus sesuai dengan kepribadian setiap orang untuk memastikan bahwa karir dapat dijalani dalam waktu yang berkesinambungan. Tujuan dari penelitian ini adalah untuk memprediksi karir mahasiswa di perguruan tinggi berdasarkan kepribadiannya menggunakan asisten virtual. Metode yang digunakan adalah metode prototype untuk membangun asisten virtual dengan mengadopsi tes kepribadian MBTI. Hasil penelitian ini menunjukkan bahwa asisten virtual yang dibangun sangat baik untuk merekomendasikan pilihan karir yang tepat kepada mahasiswa di perguruan tinggi sesuai dengan kepribadian yang dimiliki oleh masing-masing mahasiswa. Asisten virtual yang dihasilkan berhasil mengimplementasikan model uji MBTI dalam sistem yang dibangun dan memiliki tingkat akurasi yang tinggi dalam merekomendasikan pilihan karir. Penelitian ini menyimpulkan bahwa memprediksi pilihan karir yang tepat akan dapat membantu mahasiswa di perguruan tinggi untuk mempersiapkan karir sejak dini ketika masih mendidik dan mempraktekkannya dengan baik sehingga menghasilkan pilihan karir yang berkelanjutan di masa depan.
Kata Kunci — Karir, Pendidikan Tinggi, Kepribadian, Prediksi, Asisten Virtual
Abstract — Choosing a good career is important to do early when you are still in college. A good career will help must match the personality of each person to ensure that the career can be lived in a sustainable time. The purpose of this study is to predict a student's career in college based on his personality using a virtual assistant. The method used is a prototype method to build a virtual assistant by adopting the MBTI personality test. The results of this study indicate that the virtual assistant that is built is very good for recommending the right career choice to students in college according to the personality of each student. The resulting virtual assistant has successfully implemented the MBTI test model in the system built and has a high level of accuracy in recommending career choices. This study concludes that predicting the right career choice will be able to help college students to prepare for a career from an early age while still educating and practicing it well so as to produce sustainable career choices in the future.
Keywords— Careers, Higher Education, Personality, Prediction, Virtual Assistant
References
R. Ade and P. R. Deshmukh, “Efficient Knowledge Transformation System Using Pair of Classifiers for Prediction of Students Career Choice,” Procedia - Procedia Comput. Sci., vol. 46, no. Icict 2014, pp. 176–183, 2015.
C. M. Kelly, K. Strauss, J. Arnold, and C. Stride, “The relationship between leisure activities and psychological resources that support a sustainable career : The role of leisure seriousness and work-leisure similarity,” J. Vocat. Behav., no. August, p. 103340, 2019.
B. J. Taber and M. Blankemeyer, “Future Work Self and Career Adaptability in the Prediction of Proactive Career Behaviors,” J. Vocat. Behav., 2014.
S. Shoham and L. Klain-gabbay, “The academic library : Structure , space , physical and virtual use,” J. Acad. Librariansh., vol. 45, no. 5, p. 102053, 2019.
I. Ciorbea and F. Pasarica, “The Study of the Relationship Between Personality and Academic Performance,” Procedia - Soc. Behav. Sci., vol. 78, pp. 400–404, 2013.
P. Bartie et al., “A dialogue based mobile virtual assistant for tourists : The SpaceBook Project,” Comput. Environ. Urban Syst., vol. 67, no. June 2017, pp. 110–123, 2018.
B. S. Hasler, P. Tuchman, and D. Friedman, “Virtual research assistants : Replacing human interviewers by automated avatars in virtual worlds q,” Comput. Human Behav., vol. 29, pp. 1608–1616, 2013.
J. S. Yim, P. Moses, and A. Azalea, “Explaining Continuance Intention of a Cloud-Based Virtual Learning Environment with Psychological Ownership and the Technology Acceptance Model,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1, pp. 68–73, 2019.
A. A. Ariffin, A. F. Ibrahim, S. Hasan, and R. Latip, “An Efficient Virtual Machine Scheduling Algorithm To Minimize Makespan And Maximize Profit Using Hyper Heuristic Approach,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1, pp. 206–216, 2019.
E. M. Eisman, V. López, and J. L. Castro, “Expert Systems with Applications A framework for designing closed domain virtual assistants,” Expert Syst. Appl., vol. 39, no. 3, pp. 3135–3144, 2012.
S. Kim, S. Min, M. Yang, J. Choi, and H. Akay, “CIRP Annals - Manufacturing Technology AI for design : Virtual design assistant,” CIRP Ann. - Manuf. Technol., vol. 68, no. 1, pp. 141–144, 2019.
T. Tandera et al., “Personality Prediction System from Facebook Users Personality Prediction System from Facebook Users,” Procedia Comput. Sci., vol. 116, pp. 604–611, 2017.
K. Lee, Y. Choi, and D. J. Stonier, “Evolutionary algorithm for a genetic robot ’ s personality based on the Myers – Briggs Type Indicator,” Rob. Auton. Syst., vol. 60, no. 7, pp. 941–961, 2012.
R. Harrington and D. A. Loffredo, “Internet and Higher Education MBTI personality type and other factors that relate to preference for online versus face-to-face instruction,” Internet High. Educ., vol. 13, no. 1–2, pp. 89–95, 2010.
F. Güngör, H. Kurt, and G. Ekici, “The relationship between personality types and self-efficacy perceptions of student teachers,” Procedia - Soc. Behav. Sci., vol. 116, pp. 786–790, 2014.
A. L. Guzman, “Voices in and of the machine: Source orientation toward mobile virtual assistants,” Comput. Human Behav., vol. 90, pp. 343–350, 2019, doi: https://doi.org/10.1016/j.chb.2018.08.009.
S. Carlos, D. M. de la Peña, and F. Gomez-Estern, “Virtual assistant for individualized practical training on controller design**This work was supported by the MCYT-Spain under project DPI2013-48243-C2-2-R.,” IFAC-PapersOnLine, vol. 48, no. 29, pp. 205–210, 2015, doi: https://doi.org/10.1016/j.ifacol.2015.11.238.
T. K. DeLay et al., “Virtual Interactions and the 2020-2021 Residency Application Cycle in General Surgery: A Look Ahead,” J. Surg. Res., vol. 278, pp. 331–336, 2022, doi: https://doi.org/10.1016/j.jss.2022.04.075.
P. Bartie et al., “A dialogue based mobile virtual assistant for tourists: The SpaceBook Project,” Comput. Environ. Urban Syst., vol. 67, pp. 110–123, 2018, doi: https://doi.org/10.1016/j.compenvurbsys.2017.09.010.
K. S. Muttanahally, R. Vyas, J. Mago, and A. Tadinada, “Role Of Ai-Based Virtual Assistants In Oral And Maxillofacial Radiology Report Writing,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 132, no. 3, p. e119, 2021, doi: https://doi.org/10.1016/j.oooo.2021.04.037.
E. M. Eisman, V. López, and J. L. Castro, “A framework for designing closed domain virtual assistants,” Expert Syst. Appl., vol. 39, no. 3, pp. 3135–3144, 2012, doi: https://doi.org/10.1016/j.eswa.2011.08.177.
F. Bonin-Font, M. Massot Campos, and A. B. Burguera, “Arsea: A Virtual Reality Subsea Exploration Assistant⁎⁎This work is partially supported by Ministry of Economy and Competitiveness under contracts TIN2014-58662-R (AEI,FEDER,UE), DPI2014-57746-C3-2-R (AEI,FEDER,UE), DPI2017-86372-C3-3-R (AEI,FEDER,UE).,” IFAC-PapersOnLine, vol. 51, no. 29, pp. 26–31, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.09.464.
P. Kollamudi, B. Koduru, B. Poranki, and M. P. Golla, “Smart virtual assistant,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.07.303.
S.-G. Kim, S. M. Yoon, M. Yang, J. Choi, H. Akay, and E. Burnell, “AI for design: Virtual design assistant,” CIRP Ann., vol. 68, no. 1, pp. 141–144, 2019, doi: https://doi.org/10.1016/j.cirp.2019.03.024.
D. V. L. Rhodes and J. G. Rhodes, “Creating Custom Digital Assistants for the Scientific Laboratory using the HelixAI Platform,” SLAS Technol., 2022, doi: https://doi.org/10.1016/j.slast.2022.05.002.
C. Freeman and I. Beaver, “The effect of response complexity and media on user restatement with multimodal virtual assistants,” Int. J. Hum. Comput. Stud., vol. 119, pp. 12–27, 2018, doi: https://doi.org/10.1016/j.ijhcs.2018.06.002.
I. García Bermúdez, M. González Manso, E. Sánchez Sánchez, A. Rodríguez Hita, M. Rubio Rubio, and C. Suárez Fernández, “Usefulness and acceptance of telephone monitoring by a virtual assistant for patients with COVID-19 following discharge,” Rev. Clínica Española (English Ed., vol. 221, no. 8, pp. 464–467, 2021, doi: https://doi.org/10.1016/j.rceng.2021.01.007.
K. Seals et al., “Abstract No. 354 - Utilization of deep learning techniques to assist clinicians in diagnostic and interventional radiology: Development of a virtual radiology assistant,” J. Vasc. Interv. Radiol., vol. 28, no. 2, Supplement, p. S153, 2017, doi: https://doi.org/10.1016/j.jvir.2016.12.974.
F. Lareyre, C. Adam, M. Carrier, and J. Raffort, “Virtual assistants for vascular surgeons,” J. Vasc. Surg., vol. 72, no. 2, pp. 772–773, 2020, doi: https://doi.org/10.1016/j.jvs.2019.12.028.
K. Hoyland, M. Sinnott, C. Razavi, and C. Johnstone, “P.1 ‘Alexa, what’s an epidural?’ An intelligent virtual assistant prototype for delivering anaesthetic information to patients,” Int. J. Obstet. Anesth., vol. 50, pp. 6–7, 2022, doi: https://doi.org/10.1016/j.ijoa.2022.103297.
V. Mehta, R. Rammohan, R. Sanivarapu, N. Sayedy, and J. Akella, “The Role Of Virtual Assistants With Coronavirus Diagnosis And Treatment,” Chest, vol. 158, no. 4, Supplement, p. A1176, 2020, doi: https://doi.org/10.1016/j.chest.2020.08.1070.
N. M. Deepika, M. M. Bala, and R. Kumar, “Design and implementation of intelligent virtual laboratory using RASA framework,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.01.226.
D. O. Kostenko et al., “Creative virtual composer assistant based on the eBICA framework,” Procedia Comput. Sci., vol. 169, pp. 606–614, 2020, doi: https://doi.org/10.1016/j.procs.2020.02.203.
J. Austerjost et al., “Introducing a Virtual Assistant to the Lab: A Voice User Interface for the Intuitive Control of Laboratory Instruments,” SLAS Technol., vol. 23, no. 5, pp. 476–482, 2018, doi: https://doi.org/10.1177/2472630318788040.
D. V. L. Rhodes and J. G. Rhodes, “Creating Custom Digital Assistants for the Scientific Laboratory using the HelixAI Platform,” SLAS Technol., 2022, doi: https://doi.org/10.1016/j.slast.2022.05.002.