Mapping Cognitive Load and Thinking Zones in Understanding Function Limits

Authors

  • Rina Oktaviyanthi Universitas Serang Raya
  • Ria Noviana Agus Universitas Serang Raya

DOI:

https://doi.org/10.31980/plusminus.v5i2.3018

Keywords:

Cognitive dynamics, Cognitive load, Function limits, Metacognitive regulation, Thinking zones, Beban kognitif, Dinamika kognitif, Limit fungsi, Regulasi metakognitif, Zona berpikir

Abstract

Penelitian ini merespons terbatasnya kajian yang memetakan pola berpikir siswa berdasarkan beban dan zona kognitif dalam memahami limit fungsi secara grafis. Dengan menggunakan teori beban kognitif dan klasifikasi zona (risiko, tantangan, optimal), enam mahasiswa dipilih secara purposif dalam studi kasus kualitatif untuk mewakili variasi kemampuan. Data berupa respons tertulis dan think-aloud dianalisis untuk menelusuri transisi zona kognitif. Hasil menunjukkan pola kognitif yang beragam, dari miskonsepsi hingga integrasi konseptual. Beban tinggi dapat dikelola melalui regulasi diri, sedangkan beban rendah tetap berisiko jika struktur pemahaman belum berkembang. Studi ini menekankan pentingnya instruksi adaptif berdasarkan profil kognitif mahasiswa dan menawarkan kerangka zona berpikir untuk mendukung pembelajaran matematika yang personal.

This study addresses the limited research mapping students’ thinking patterns through cognitive load and cognitive zones in understanding function limits graphically. Using Cognitive Load Theory and the classification of risk, challenge, and optimal zones, six first-year mathematics education students were purposively selected in a qualitative case study to represent varying academic abilities. Data from written responses and think-aloud protocols were analyzed to trace zone transitions. Findings showed diverse cognitive patterns, from misconceptions to successful conceptual integration. High cognitive load was manageable through self-regulation, while low load still poses risks if the understanding structure is undeveloped. The study highlights the importance of adaptive instruction aligned with students’ cognitive profiles and offers a thinking zone framework to support personalized mathematics learning.

References

Azungah, T. (2018). Qualitative research: deductive and inductive approaches to data analysis. Qualitative Research Journal, 18(4), 383–400. https://doi.org/10.1108/QRJ-D-18-00035/FULL/XML

Barbieri, C. A., & Rodrigues, J. (2025). Leveraging cognitive load theory to support students with mathematics difficulty. Educational Psychologist. https://doi.org/10.1080/00461520.2025.2486138

Block, N. (2023). The Border Between Seeing and Thinking. The Border Between Seeing and Thinking, 560. https://doi.org/10.1093/OSO/9780197622223.001.0001

Boyer, M., Destrebecqz, A., & Cleeremans, A. (2005). Processing abstract sequence structure: Learning without knowing, or knowing without learning? Psychological Research, 69(5–6), 383–398. https://doi.org/10.1007/S00426-004-0207-4/METRICS

Braun, V., & Clarke, V. (2021). To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales. Qualitative Research in Sport, Exercise and Health, 13(2), 201–216. https://doi.org/10.1080/2159676X.2019.1704846

Bruner, J., & Haste, H. (2010). Making sense (Routledge revivals): The child’s construction of the world. Making Sense (Routledge Revivals): The Child’s Construction of the World, 1–136. https://doi.org/10.4324/9780203830581

Bryce, T. G. K., & Blown, E. J. (2024). Ausubel’s meaningful learning re-visited. Current Psychology, 43(5), 4579–4598. https://doi.org/10.1007/S12144-023-04440-4/METRICS

Champ, R. E., Adamou, M., & Tolchard, B. (2022). Seeking Connection, Autonomy, and Emotional Feedback: A Self-Determination Theory of Self-Regulation in Attention-Deficit Hyperactivity Disorder. Psychological Review, 130(3), 569–603. https://doi.org/10.1037/REV0000398

Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35(2), 1–18. https://doi.org/10.1007/S10648-023-09782-W/FIGURES/3

Cross Francis, D., Eker, A., Liu, J., Lloyd, K., & Bharaj, P. (2022). (Mis)alignment between noticing and instructional quality: the role of psychological and cognitive constructs. Journal of Mathematics Teacher Education, 25(5), 599–632. https://doi.org/10.1007/S10857-021-09509-0/METRICS

Doolittle, P. (1997). Vygotsky’s Zone of Proximal Development as a Theoretical Foundation for Cooperative Learning. Journal on Excellence in College Teaching, 8(1). https://celt.miamioh.edu/index.php/JECT/article/view/913

Elliott, R., & Timulak, L. (2021). Essentials of descriptive-interpretive qualitative research: A generic approach. Essentials of Descriptive-Interpretive Qualitative Research: A Generic Approach. https://doi.org/10.1037/0000224-000

Fletcher, A. K. (2024). Self-assessment as a student-agentic zone of proximate competence development. Educational Review, 76(4), 956–978. https://doi.org/10.1080/00131911.2022.2103520

Friedman, N. P., & Robbins, T. W. (2021). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2021 47:1, 47(1), 72–89. https://doi.org/10.1038/s41386-021-01132-0

Guerra-Reyes, F., Guerra-Dávila, E., Naranjo-Toro, M., Basantes-Andrade, A., & Guevara-Betancourt, S. (2024). Misconceptions in the Learning of Natural Sciences: A Systematic Review. Education Sciences 2024, Vol. 14, Page 497, 14(5), 497. https://doi.org/10.3390/EDUCSCI14050497

Hayes, S. C., & Hofmann, S. G. (2021). “Third-wave” cognitive and behavioral therapies and the emergence of a process-based approach to intervention in psychiatry. World Psychiatry, 20(3), 363–375. https://doi.org/10.1002/WPS.20884

Hennink, M., & Kaiser, B. N. (2022). Sample sizes for saturation in qualitative research: A systematic review of empirical tests. Social Science & Medicine, 292, 114523. https://doi.org/10.1016/J.SOCSCIMED.2021.114523

Kratochwill, T. R., Horner, R. H., Levin, J. R., Machalicek, W., Ferron, J., & Johnson, A. (2021). Single-case design standards: An update and proposed upgrades. Journal of School Psychology, 89, 91–105. https://doi.org/10.1016/J.JSP.2021.10.006

Krieglstein, F., Beege, M., Rey, G. D., Sanchez-Stockhammer, C., & Schneider, S. (2023). Development and Validation of a Theory-Based Questionnaire to Measure Different Types of Cognitive Load. Educational Psychology Review 2023 35:1, 35(1), 1–37. https://doi.org/10.1007/S10648-023-09738-0

Lepore, M. (2024). A holistic framework to model student’s cognitive process in mathematics education through fuzzy cognitive maps. Heliyon, 10(16), e35863. https://doi.org/10.1016/J.HELIYON.2024.E35863

Li, S., & Lajoie, S. P. (2022). Cognitive engagement in self-regulated learning: an integrative model. European Journal of Psychology of Education, 37(3), 833–852. https://doi.org/10.1007/S10212-021-00565-X/METRICS

Lodge, J. M., Kennedy, G., Lockyer, L., Arguel, A., & Pachman, M. (2018). Understanding Difficulties and Resulting Confusion in Learning: An Integrative Review. Frontiers in Education, 3, 314989. https://doi.org/10.3389/FEDUC.2018.00049/BIBTEX

Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548–571. https://doi.org/10.1002/SCE.10032

Oktaviyanthi, R., Agus, R. N., & Khotimah. (2024). Exploring the link between cognitive load and brain activity during calculus learning through electroencephalogram (EEG): Insights from visualization and cluster analysis. Journal on Mathematics Education, 15(4), 1383–1408. https://doi.org/10.22342/JME.V15I4.PP1383-1408

Petričević, E., Putarek, V., & Pavlin-Bernardić, N. (2022). Engagement in learning mathematics: the role of need for cognition and achievement goals. Educational Psychology, 42(8), 1045–1064. https://doi.org/10.1080/01443410.2022.2120599

Phan, H. P., & Ngu, B. H. (2021). A Perceived Zone of Certainty and Uncertainty: Propositions for Research Development. Frontiers in Psychology, 12, 666274. https://doi.org/10.3389/FPSYG.2021.666274/BIBTEX

Rosa, L., Serrano, A. V., Gallardo Herrerías, C., Gkintoni, E., Antonopoulou, H., Sortwell, A., & Halkiopoulos, C. (2025). Challenging Cognitive Load Theory: The Role of Educational Neuroscience and Artificial Intelligence in Redefining Learning Efficacy. Brain Sciences 2025, Vol. 15, Page 203, 15(2), 203. https://doi.org/10.3390/BRAINSCI15020203

Schacter, D. L. (2025). Explicit Memory, Implicit Memory, and the Hippocampus: Insights From Early Neuroimaging Studies. Hippocampus, 35(1), e23657. https://doi.org/10.1002/HIPO.23657

Seufert, T. (2018). The interplay between self-regulation in learning and cognitive load. Educational Research Review, 24, 116–129. https://doi.org/10.1016/J.EDUREV.2018.03.004

Seufert, T., Hamm, V., Vogt, A., & Riemer, V. (2024). The Interplay of Cognitive Load, Learners’ Resources and Self-regulation. Educational Psychology Review, 36(2), 1–30. https://doi.org/10.1007/S10648-024-09890-1/FIGURES/1

Shen, X., Liu, X., Hu, X., Zhang, D., & Song, S. (2023). Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition. IEEE Transactions on Affective Computing, 14(3), 2496–2511. https://doi.org/10.1109/TAFFC.2022.3164516

Sinha, T., & Kapur, M. (2021). When Problem Solving Followed by Instruction Works: Evidence for Productive Failure. Review of Educational Research, 91(5), 761–798. https://doi.org/10.3102/00346543211019105/SUPPL_FILE/SJ-XLSX-7-RER-10.3102_00346543211019105.XLSX

Skulmowski, A., & Xu, K. M. (2021). Understanding Cognitive Load in Digital and Online Learning: a New Perspective on Extraneous Cognitive Load. Educational Psychology Review 2021 34:1, 34(1), 171–196. https://doi.org/10.1007/S10648-021-09624-7

Sweller, J. (2011). Cognitive Load Theory. Psychology of Learning and Motivation - Advances in Research and Theory, 55, 37–76. https://doi.org/10.1016/B978-0-12-387691-1.00002-8

Sweller, J. (2018). Measuring cognitive load. Perspectives on Medical Education, 7(1), 1–2. https://doi.org/10.1007/S40037-017-0395-4

Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://link.springer.com/article/10.1007/s11423-019-09701-3

Sweller, J. (2022). The role of evolutionary psychology in our understanding of human cognition: Consequences for cognitive load theory and instructional procedures. Educational Psychology Review, 34(4), 2229–2241. https://doi.org/10.1007/s10648-021-09647-0

Uher, J. (2021). Psychometrics is not measurement: Unraveling a fundamental misconception in quantitative psychology and the complex network of its underlying fallacies. Journal of Theoretical and Philosophical Psychology, 41(1), 58–84. https://doi.org/10.1037/TEO0000176

Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional education: Design principles and strategies. Medical Education, 44(1), 85–93. https://doi.org/10.1111/J.1365-2923.2009.03498.X;REQUESTEDJOURNAL:JOURNAL:13652923

Wang, H., & Lehman, J. D. (2021). Using achievement goal-based personalized motivational feedback to enhance online learning. Educational Technology Research and Development, 69(2), 553–581. https://doi.org/10.1007/S11423-021-09940-3/METRICS

Wolcott, M. D., & Lobczowski, N. G. (2021). Using cognitive interviews and think-aloud protocols to understand thought processes. Currents in Pharmacy Teaching and Learning, 13(2), 181–188. https://doi.org/10.1016/J.CPTL.2020.09.005

Xi, J., & Lantolf, J. P. (2021). Scaffolding and the zone of proximal development: A problematic relationship. Journal for the Theory of Social Behaviour, 51(1), 25–48. https://doi.org/10.1111/JTSB.12260;CTYPE:STRING:JOURNAL

Younger, J. W., Schaerlaeken, S., Anguera, J. A., & Gazzaley, A. (2024). The whole is greater than the sum of its parts: Using cognitive profiles to predict academic achievement. Trends in Neuroscience and Education, 36, 100237. https://doi.org/10.1016/J.TINE.2024.100237

Zadina, J. N. (2023). The Synergy Zone: Connecting the Mind, Brain, and Heart for the Ideal Classroom Learning Environment. Brain Sciences 2023, Vol. 13, Page 1314, 13(9), 1314. https://doi.org/10.3390/BRAINSCI13091314

Downloads

Published

2025-07-14

How to Cite

Oktaviyanthi, R., & Agus, R. N. (2025). Mapping Cognitive Load and Thinking Zones in Understanding Function Limits. Plusminus: Jurnal Pendidikan Matematika, 5(2), 209–226. https://doi.org/10.31980/plusminus.v5i2.3018

Issue

Section

Articles