An Analysis of Frieze Patterns, Crystallographic Patterns, and Philosophical Values on Subahnale Woven Motifs Sukarare Village
DOI:
https://doi.org/10.31980/mosharafa.v12i3.823Keywords:
filosofis, frieze, Kain Tenun, kristalografi, philosophical, Woven Fabrics, crystallographyAbstract
Budaya dengan keberagaman dan keunikan adat istiadat, kesenian dan kerajinannya, memberikan identitas bagi suatu daerah. Keunikan-keunikan budaya ini dapat dikaji untuk dijadikan sebagai bagian dari sumber belajar. Etnomatematika merupakan jembatan untuk mengeksplorasi matematika yang berkembang di masyarakat. Dengan demikian penelitian ini berupaya untuk menganalisis pola frieze, pola kristalografi dan nilai-nilai filosofis yang terdapat pada motif kain tenun subahnale Desa Sukarare. Metode yang digunakan dalam Penelitian ini adalah metode etnografi. Data penelitian dikumpulkan melalui observasi, studi pustaka, dan wawancara dengan praktisi budaya, tokoh adat, pengerajin kain tenun dan budayawan. Hasil penelitian menunjukkan bahwa motif (reragian) kain tenun subahnale terbentuk dengan perpaduan bentuk-bentuk geometri yakni garis, segi tiga, segi empat dan segi enam. Bentuk geometri tersebut tersusun menggunakan model matematika yakni translasi, rotasi da refleksi. Adapun pola-pola yang terbentuk berupa 4 buah pola frieze yaitu pola 3, 4 ,6 dan 7. Selain itu terdapat juga pola Kristalografi yaitu pola p1, pm, dan p4m.
Culture, with its diversity and unique customs, arts, and crafts, provides an identity for a region. This cultural uniqueness can be studied as part of learning resources. Ethnomathematics is a bridge to exploring mathematics that develops in society. Thus, this study seeks to analyze the frieze patterns, crystallographic patterns, and philosophical values in the subahnale woven fabric motifs in Sukarare Village. The method used in this research is the ethnographic method. Research data were collected through observation, literature study, and interviews with cultural practitioners, traditional leaders, woven cloth artisans, and humanists. The results showed that the motif (reragian) of the subahnale woven fabric was formed by a combination of geometric shapes: lines, triangles, rectangles, and hexagons. The geometric shapes are arranged using a mathematical model: translation, rotation, and reflection. The patterns formed are 4 frieze patterns, namely patterns 3, 4, 6, and 7. In addition, there are also crystallographic patterns, namely patterns p1, pm, and p4m.
References
Abdullah, A. S. (2017). Ethnomathematics in perspective of sundanese culture. Journal on Mathematics Education, 8(1), 1–16. https://doi.org/10.22342/jme.8.1.3877.1-15
Amit, M., & Qouder, F. A. (2017). Weaving Culture and Mathematics in the Classroom: The Case of Bedouin Ethnomathematics. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its diverse approaches for mathematics education (pp. 23–50). Cham: Springer Nature. https://doi.org/ 10.1007/978-3-319-59220-6_2
Andriani, L., & Muchyidin, A. (2020). Pola Frieze Group Pada Gerakan Tari Buyung Kuningan. Jurnal Edukasi Dan Sains Matematika (JES-MAT), 6(2), 81. https://doi.org/10.25134/jes-mat.v6i2.2997
Bonotto, C. (2017). How to replace the word problems with activities of realistic mathematical modeling. In W. Blum, P. L. Galbraith, H. Henn & M. Niss (Eds.),. In Modeling and Applications in Mathematics Education: The 14th ICMI Study (pp. 185–192). Springer. https://doi.org/10.1007/978-0-387-29822-1
C.D.H. Cooper. (2013). Techniques of Algebra. Australia: Macquarie University.
D’Ambrosio, U. (2016). An overview of the history of Ethnomathematics. In Milton Rosa, U. D’Ambrosio, D. C. Orey, L. Shirley, W. V. Alangui, P. Palhares, & M. E. Gavarrete (Eds.), Current and Future Perspectives of Ethnomathematics as A Program (pp. 5–10). Camp. Springer US. https://doi.org/10.1007/978-3-319-30120-4_3
D’Ambrusio, U., & Rosa, M. (2016). Ethnomathemtics and Its Pdagogical Action. 13th International Congress on Mathematical Education Hamburg, July, 24–31.
Damsiah, L. (2022). Asal usul kain tenun subahnale Desa Sukarara [The origin of the subahnale woven fabric in Sukarara Village]. Personal Communication.
Fauzi, A., & Setiawan, H. (2020). Etnomatematika: Konsep geometri pada kerajinan tradisional sasak dalam pembelajaran matematika di sekolah dasar. Didaktis: Jurnal Pendidikan Dan ….
Fauzi, L. M., & Gazali, M. (2022). The characters of the traditional residence of Sasak tribe based on sikut awak: An ethnomathematics study. Jurnal Elemen, 8(1), 55–65. https://doi.org/10.29408/jel.v8i1.4143
Fauzi, L. M., Gazali, M., & Fauzi, A. (2021). Ethnomathematics: A mathematical exploration on the layout of tui gubuk and the architecture of Segenter Traditional House. Jurnal Math Educator Nusantara, 7(2), 135–148.
Fauzi, L. M., Hanum, F., Jailani, & Jatmiko. (2022). Ethnomathematics : Mathematical ideas and educational values on the architecture of Sasak traditional residence. International Journal of Evaluation and Research in Education (IJERE), 11(1), 250–259. https://doi.org/10.11591/ijere.v11i1.21775
Fauzi, L. M., Hayati, N., Gazali, M., & Fauzi, A. (2022). Ethnomathematics : Exploration of Mathematics and Cultural Values in the Performing Arts of the Sasak Tribe Perisean. Hypotenuse : Journal of Mathematical Society, 4(1), 24–37. https://doi.org/10.18326/hypotenusa.v4i1.7240
Fauzi, L. M., Hayati, N., Satriawan, R., & Fahrurrozi, F. (2023). Perceptions of geometry and cultural values on traditional woven fabric motifs of the Sasak people. Jurnal Elemen, 9(1), 153–167. https://doi.org/10.29408/jel.v9i1.6873
Fitriyah, A. T., & Syafi’i, M. (2022). Etnomatematika Pada Bale Lumbung Sasak. Mosharafa: Jurnal Pendidikan Matematika, 11(1), 1–12. https://doi.org/10.31980/mosharafa.v11i1.1050
Gallian, J. (2021). Contemporary Abstract Algebra. In Contemporary Abstract Algebra. https://doi.org/10.1201/9781003142331
Gesum. (2022). Perkembangan kain tenun subahnale [The development of subahnale woven fabrics]. Personal Communication.
Halini, H., Zubaidah, R., Pasaribu, R. L., Mirza, A., & Afriansyah, E. A. (2023). Students’ Scientific Attitudes and Creative Thinking Skills. Mosharafa: Jurnal Pendidikan Matematika, 12(2), 315-326.
Hardiani, N., & Putrawangsa, S. (2019). Etnomatematika: Tradisi pengukuran masyarakat suku Sasak dan potensi pengintegrasiannya dalam pembelajaran matematika. AKSIOMA: Jurnal Program Studi Matematika.
Hartono, H., & Putra, M. I. R. (2022). Desain LKM elektronik bermuatan etnomatematika pada pakaian adat Dayak Iban dan bahasa Inggris. Mosharafa: Jurnal Pendidikan Matematika, 11(2), 293-304.
Hunter, R., & Hunter, J. (2017). Maintaining a Cultural Identity While Constructing a Mathematical Disposition as a Pāsifika Learner. Handbook of Indigenous Education, 1–19. https://doi.org/10.1007/978-981-10-1839-8_14-1
Iqrima, I., Zulkarnain, I., & Kamaliyah, K. (2023). Soal Matematika dalam Materi Statistika Berbasis Etnomatematika untuk Mengukur Literasi Matematis Siswa. Plusminus: Jurnal Pendidikan Matematika, 3(1), 39-50.
Lalu Agus Fathurrahman. (2022). Filosofi dan makna budaya simbol-simbol pada kain tenun tradisional Sasak [Philosophy and cultural meaning of symbols on traditional Sasak woven fabrics]. Personal Communication.
Liu, Y., & Collins, R. T. (1998). Frieze and Wallpaper Symmetry Groups Classification under Affine and Perspective Distortion. Research Gate Publication, May, 1–55.
Meilina, A., Mariana, N., & Rahmawati, I. (2023). Implementasi lkpd pmri dalam materi membilang sampai 20 untuk siswa fase a sekolah dasar. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 2(1), 45-54.
Nemeth, E. (2016). Embedding logical empiricism into the history of epistemology: Eino kaila on human knowledge. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 6(1), 148–157.
Novitasari, D., Sridana, N., & Tyaningsih, R. Y. (2022). Eksplorasi Etnomatematika dalam Alat Musik Gendang Beleq Suku Sasak. 5(1), 16–27.
Nuqthy, F., Nityana, A. H., & Navia, N. A. (2022). Kemampuan berpikir kreatif siswa dalam menyelesaikan soal berbasis etnomatematika tipe multiple solutions task. Mosharafa: Jurnal Pendidikan Matematika, 11(3), 495-506.
Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of yogyakarta, indonesia. Journal on Mathematics Education, 11(3), 439–456. https://doi.org/10.22342/jme.11.3.12949.439-456
Rahmawati, A., Helmi, & Fran, F. (2018). Frieze Group Pada Seni Dekoratif Masjid. Buletin Ilmiah Math, Stat, Dan Terapannyaan Terapannya, 7(1), 23–32.
Rosa, M., & Orey, D. C. (2016). State of the art in Ethnomathematics. In M. Rosa, U. D’Ambrosio, D. C. Orey, L. Shirley, W. V. Alangui, P. Palhares, & M. E. Gavarrete (Eds.), Current and future perspectives of Ethnomathematics as a program (pp. 11–37). Camp. Springer US. https://doi.org/ 10.1007/978-3-319-30120-4_3
Shirley, L., & Palhares, P. (2016). Ethnomathematics and its diverse pedagogical approaches. In Current and future perspectives of ethnomathematics as a program (pp. 25–44). Cham: Springer. https://doi.org/10.1007/978-3-319-59220-6
Spradley, J. P. (2016). The Ethnographic Interview. In The SAGE Encyclopedia of Communication Research Methods. Reissued Long Grove, IL: Waveland Press, Inc. https://doi.org/10.4135/9781483381411.n168
Sutarto, S., Hastuti, I. D., & Supiyati, S. (2021). Etnomatematika: Eksplorasi Transformasi Geometri Tenun Suku Sasak Sukarara. Jurnal Elemen, 7(2), 324–335. https://doi.org/10.29408/je
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mosharafa: Jurnal Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.