Factor Analysis in Constructing Mathematical Disposition Instrument: Affective Domain
DOI:
https://doi.org/10.31980/mosharafa.v12i1.747Keywords:
disposisi matematis, domain afektif, analisis faktor konfirmatori, mathematical disposition, affective domain, confirmatory factor analysisAbstract
Keberadaan dari peran disposisi matematis menjadi aspek yang masih dinilai vital ketika siswa berhadapan dengan pembelajaran matematika. Di tengah beragam penelitian terkait hal ini, masih minim studi yang mengkonstruksi instrumen disposisi matematis yang memenuhi kaidah statistik. Penelitian ini bertujuan untuk mengkonstruksi instrumen disposisi matematis yang telah melewati kajian statistik, dan difokuskan pada konstruksi instrumen untuk domain afektif. Penelitian yang melibatkan 185 mahasiswa S1 ini menggunakan instrumen berupa 33 butir pertanyaan 4 skala Likert yang dianalisis menggunakan analisis faktor konfirmatori melalui IBM SPSS 20. Metode ekstraksi menggunakan Maximum Likelihood dan menerapkan rotasi Varimax untuk membedakan antar dimensi dengan lebih maksimal. Uji prasyarat mengindikasikan terpenuhinya kecukupan sampel dan korelasi yang kuat untuk dilanjutkan dalam proses pengelompokkan dimensi. Hasil analisis faktor konfirmatori memberikan 7 dimensi disposisi matematis domain afektif, di mana nilai reliabilitas Cronbach Alpha dari tiap dimensi cukup tinggi, di mana mengindikasikan validitas yang baik. Secara keseluruhan, konstruksi instrumen memuat 33 butir pertanyaan yang valid dan reliabel. Konstruksi instrumen yang telah teruji secara statistik ini dapat digunakan untuk keperluan penelitian lanjutan yang hendak menelaah secara komprehensif terkait disposisi matematis yang menyoroti domain afektif.
The existence of the role of mathematical disposition is still vital in dealing with mathematics learning. Among various researches discussing this issue, there are still few studies that deal with constructing mathematical disposition that fulfill adequate statistical review. This study aims to construct mathematical disposition instrument, which is well-tested through statistic review, and focused on affective domain. Methods: This study which involved 185 undergraduate students utilized instrument consisted of 33 four-Likert scale items analyzed using Confirmatory Factor Analysis (CFA) through IBM SPSS 20. The extract method was using Maximum likelihood and applied Varimax rotation to distinguish among dimensions optimally. Findings: The assumption tests indicate the sampling adequacy and strong correlation to be further conducted into the dimensions grouping process. The result of CFA brings 7 dimensions of mathematical disposition in the affective domain, where the value of Cronbach Alpha reliability of each dimension is quite high, which indicates good validity. Overall, the instrument construction provides 33 items which are all valid and reliable. Conclusion: The instrument construction which has been statistically tested, can be used for the purposes of further research seeking to comprehensively examine mathematical dispositions that highlight affective domains.
References
Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments, 28(1), 1–13. https://doi.org/10.1080/10494820.2020.1813180
Aeni, T. N., & Afriansyah, E. A. (2022). Kesalahan Siswa dalam Menyelesaikan Soal Cerita Sistem Persamaan Linear Dua Variabel berdasarkan Langkah Penyelesaian Polya. Jurnal Kongruen, 1(3), 279-286.
Agyei, E., Mbowura, C. K., & Domonaamwin, C. B. (2021). College pre-service teachers’ disposition to mathematics as they enter the college. American Journal of Educational Research, 9(8), 498–503. https://doi.org/10.12691/education-9-8-5
Al-Mamary, Y. H., & Alshallaqi, M. (2022). Impact of autonomy, innovativeness, risk-taking, proactiveness, and competitive aggressiveness on students’ intention to start a new venture. Journal of Innovation & Knowledge, 7(4), 100239.
Almerino, Jr., P. M., Etcuban, J. O., De Jose, C. G., & Almerino, J. G. F. (2019). Students’ affective belief as the component in mathematical disposition. International Electronic Journal of Mathematics Education, 14(3), 475–487. https://doi.org/10.29333/iejme/5750
Beyers, J. (2011). Development and evaluation of an instrument to assess prospective teachers’ dispositions with respect to mathematics. International Journal of Business and Social Science, 2(16), 20–33.
Capuno, R., Necesario, R., Etcuban, J. O., Espina, R., Padillo, G., & Manguilimotan, R. (2019). Attitudes, Study Habits, and Academic Performance of Junior High School Students in Mathematics. International Electronic Journal of Mathematics Education, 14(3), 547-561.
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed methods. Thousand Oaks, CA: Sage.
Fatimah, E. S., & Sundayana, R. (2022). Kemampuan koneksi matematis berdasarkan disposisi matematis siswa pada materi sistem persamaan linear dua variabel. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 1(1), 69-82. https://doi.org/10.31980/powermathedu.v1i1.1917
Galoyan, T., Betts, K., Delaney, B., & Fourie, M. (2021). Exploring online pedagogical practices for enhancing transfer of learning in higher education. Online Learning Journal, 25(4), 29–48. https://doi.org/10.24059/olj.v25i4.2887
Hutajulu, M., Wijaya, T. T., & Hidayat, W. (2019). The effect of mathematical disposition and learning motivation on problem solving: An analysis. Infinity Journal, 8(2), 229–238. https://doi.org/10.22460/infinity.v8i2.p229-238
Irfan, M., Kusumaningrum, B., Yulia, Y., & Widodo, S. A. (2020). Challenges during the pandemic: Use of e-learning in mathematics learning in higher education. Infinity Journal, 9(2), 147–158. https://doi.org/10.22460/infinity.v9i2.p147-158
Kalogeropoulos, P., Roche, A., Russo, J., Vats, S., & Russo, T. (2021). Learning mathematics from home during covid-19: Insights from two inquiry-focussed primary schools. EURASIA: Journal of Mathematics, Science and Technology Education, 17(5), 1–16. https://doi.org/10.29333/ejmste/10830
Kusmaryono, I., Suyitno, H., Dwijanto, D., & Dwidayati, N. (2019). The effect of mathematical disposition on mathematical power formation: Review of dispositional mental functions. International Journal of Instruction, 12(1), 343–356. https://doi.org/10.29333/iji.2019.12123a
Lu’luilmaknun, U., Al Kautsar, K. S., Apsari, R. A., Triutami, T. W., & Wulandari, N. P. (2021). Collaborative skills of pre-service mathematics teachers in blended learning. JTAM (Jurnal Teori Dan Aplikasi Matematika), 5(1), 60–69. https://doi.org/10.31764/jtam.v5i1.3309
Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311–322. https://doi.org/10.2147/PRBM.S141421
Macher, D., Paechter, M., Papousek, I., Ruggeri, K., Freudenthaler, H. H., & Arendasy, M. (2013). Statistics anxiety, state anxiety during an examination, and academic achievement. British Journal of Educational Psychology, 83(4), 535–549. https://doi.org/10.1111/j.2044-8279.2012.02081.x
Machmud, T., Pusi, R. A., & Pauweni, K. A. (2022). Deskripsi Disposisi Matematis Mahasiswa pada Mata Kuliah Kalkulus 1. Mosharafa: Jurnal Pendidikan Matematika, 11(3), 349-358. https://doi.org/10.31980/mosharafa.v11i3.1486
McMinn, M., Aldridge, J., & Henderson, D. (2020). Learning environment, self‑efficacy for teaching mathematics, and beliefs about mathematics. Learning Environments Research, 23(2), 1–15. https://doi.org/10.1007/s10984-020-09326-x
Minggi, I., Arwadi, F., & Bakri, R. A. I. (2022). Kemampuan Pemecahan Masalah Matematis Berdasarkan Disposisi Matematis pada Materi Sistem Persamaan Linear Dua Variabel. Plusminus: Jurnal Pendidikan Matematika, 2(3), 495-508. https://doi.org/10.31980/plusminus.v2i3.2170
Poladian, L. (2013). Engaging life-sciences students with mathematical models: Does authenticity help? International Journal of Mathematical Education in Science and Technology, 44(6), 865–876. https://doi.org/10.1080/0020739X.2013.811301
Rizky, E. N. F., & Sritresna, T. (2021). Peningkatan kemampuan berpikir kritis dan disposisi matematis siswa antara guided inquiry dan problem posing. PLUSMINUS: Jurnal pendidikan matematika, 1(1), 33-46. https://doi.org/10.31980/plusminus.v1i1.1024
Rozgonjuk, D., Kraav, T., Mikkor, K., Orav-Puurand, K., & Täht, K. (2020). Mathematics anxiety among STEM and social sciences students: the roles of mathematics self-efficacy, and deep and surface approach to learning. International Journal of STEM Education, 7(1), 1–11. https://doi.org/10.1186/s40594-020-00246-z
Samuel, T. S., & Warner, J. (2021). “I Can Math!”: Reducing math anxiety and increasing math self-efficacy using a mindfulness and growth mindset-based intervention in first-year students. Community College Journal of Research and Practice, 45(3), 205–222. https://doi.org/10.1080/10668926.2019.1666063
Soesanto, R. H., & Dirgantoro, K. P. S. (2021). Welcome back to face-to-face: A novel Indonesian issue of students’ perceptions towards learning transition. Issues in Educational Research, 31(4), 1249–1269.
Soesanto, R. H., Rahayu, W., & Kartono. (2020). Mathematical Beliefs and the Self-Regulated Learning of Students in a Mathematics Education Study Program. JOHME: Journal of Holistic Mathematics Education, 4(1), 31–44. https://doi.org/10.19166/johme.v4i1.2637
Sovey, S., Osman, K., & Matore, M. E. E. M. (2022). Rasch Analysis for Disposition Levels of Computational Thinking Instrument among Secondary School Students. EURASIA Journal of Mathematics, Science and Technology Education, 18(3).
Syarif, I., Mahyuddin, M. J., Sura’, H., & Baharuddin, E. E. (2021). Using moodle learning management system in teaching from distance learning to the e-learning 5.0 of new technology. Journal of Physics: Conference Series, 1933(1), 1–5. https://doi.org/10.1088/1742-6596/1933/1/012124
Vukovic, R. K., Kieffer, M. J., Bailey, S. P., & Harari, R. R. (2013). Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemporary Educational Psychology, 38(1), 1–10. https://doi.org/10.1016/j.cedpsych.2012.09.001
Warren, L., Reilly, D., Herdan, A., & Lin, Y. (2020). Self-efficacy, performance and the role of blended learning. Journal of Applied Research in Higher Education, 13(1), 98–111. https://doi.org/10.1108/JARHE-08-2019-0210
Woltering, V., Herrler, A., Spitzer, K., & Spreckelsen, C. (2009). Blended learning positively affects students’ satisfaction and the role of the tutor in the problem-based learning process: Results of a mixed-method evaluation. Advances in Health Sciences Education, 14(5), 725–738. https://doi.org/10.1007/s10459-009-9154-6
Wong, R. (2020). When no one can go to school: Does online learning meet students’ basic learning needs? Interactive Learning Environments, 28(2), 1–17. https://doi.org/10.1080/10494820.2020.1789672
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mosharafa: Jurnal Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.