Exploring Self-Efficacy Profiles and Their Influence on Undergraduate Students' Geometry Problem-Solving Processes: A Qualitative Case Study
DOI:
https://doi.org/10.31980/mosharafa.v15i1.3566Keywords:
Self-Efficacy, Geometry Problem-Solving, Polya’s Problem-Solving Stages, Undergraduate Students, Qualitative Case Study, Efikasi Diri, Pemecahan Masalah Polya, Studi Kasus Kualitatif, GeometriAbstract
Pemecahan masalah geometri menuntut integrasi antara kemampuan kognitif dan aspek afektif, khususnya efikasi diri. Penelitian ini bertujuan mengidentifikasi profil efikasi diri mahasiswa pendidikan matematika serta menganalisis pengaruhnya terhadap proses pemecahan masalah geometri berdasarkan tahapan Polya. Menggunakan desain studi kasus kualitatif, penelitian ini melibatkan 33 mahasiswa. Data dikumpulkan melalui skala efikasi diri, tes geometri berbasis empat tahap Polya, dan wawancara semi-terstruktur dengan subjek yang merepresentasikan tingkat efikasi diri tinggi, sedang, dan rendah. Hasil penelitian mengungkap tiga profil berbeda: mahasiswa dengan efikasi diri tinggi mampu menunjukkan pemahaman mendalam hingga evaluasi reflektif; mahasiswa dengan efikasi diri sedang mampu melaksanakan prosedur namun tidak stabil pada tahap perencanaan dan evaluasi; sedangkan mahasiswa dengan efikasi diri rendah kesulitan dalam merumuskan strategi dan verifikasi hasil. Temuan ini menegaskan bahwa efikasi diri berpengaruh signifikan terhadap kualitas pemecahan masalah geometri, sehingga perlu diintegrasikan dalam perancangan pembelajaran matematika yang komprehensif.
Geometric problem-solving demands the integration of cognitive abilities and affective readiness, notably self-efficacy. This study aims to identify the self-efficacy profiles of mathematics education students and analyze their influence on the geometric problem-solving process based on Polya’s stages. Employing a qualitative case study design, the research involved 33 students. Data were collected through a self-efficacy scale, geometric problem-solving tests structured according to Polya’s four stages, and semi-structured interviews with subjects representing high, moderate, and low self-efficacy levels. The findings reveal three distinct profiles: students with high self-efficacy demonstrate deep understanding followed by reflective evaluation; those with moderate self-efficacy execute procedures correctly but show instability during the planning and evaluation stages; while students with low self-efficacy struggle with strategy formulation and result verification. These findings underscore that self-efficacy significantly influences the quality of geometric problem-solving, highlighting the necessity of integrating affective factors into the design of comprehensive mathematics instruction.
References
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman and Company. American Psychological Association, 23.
Baran, M. L. (2023). Strengthening Learning and Quality Outcomes for Adult Learning and Teaching Through Trust and Motivation (pp. 49–71). https://doi.org/10.4018/978-1-7998-4748-9.ch003
Chivai, C. H., Soares, A. A., & Catarino, P. (2022). Application of GeoGebra in the Teaching of Descriptive Geometry: Sections of Solids. Mathematics, 10(17), 3034. https://doi.org/10.3390/math10173034
Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE Publications.
De Araujo, W., Gomes, H., Cole, B., Ferreira Filho, J. E., & Lustosa, I. (2023). The main difficulties perceived in the teaching and learning of geometry. Concilium, 23(16), 78–95. https://doi.org/10.53660/CLM-1881-23M73
Ernawati, & Sutiarso, S. (2020). Analysis of difficulties in solving mathematical problems categorized higher order thinking skills (HOTS) on the subject of rank and shape of the root according to polya stages. Journal of Physics: Conference Series, 1563(1), 012041. https://doi.org/10.1088/1742-6596/1563/1/012041
Facciaroni, L., Gambini, A., & Mazza, L. (2023). The difficulties in geometry: A quantitative analysis based on results of mathematics competitions in Italy. European Journal of Science and Mathematics Education, 11(2), 259–270. https://doi.org/10.30935/scimath/12590
Febriyanti, R., Novitasari, N., & Zakiyah, N. S. (2022). Analisis Kesalahan Siswa Sekolah Menengah Atas dalam Memecahkan Masalah Geometri. Paradikma: Jurnal Pendidikan Matematika, 15(1), 1–7. https://doi.org/10.24114/paradikma.v15i1.34221
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10). https://doi.org/10.1037/0003-066X.34.10.906
Golding, S., & Verrier, D. (2021). Teaching people to read comics: the impact of a visual literacy intervention on comprehension of educational comics. Journal of Graphic Novels and Comics, 12(5), 824–836. https://doi.org/10.1080/21504857.2020.1786419
Hilf, N., & Samovol, P. (2025). Diagnostic Problem Solving In Geometry As A Tool For Diagnosing Student Difficulties. International Journal of Advanced Research, 13(04), 988–992. https://doi.org/10.21474/IJAR01/20803
Lidiastuti, A. E. (2024). A Review of Augmented Reality Implications and Challenges for Science Education: Current and Future Perspective. Pakistan Journal of Life and Social Sciences (PJLSS), 22(2). https://doi.org/10.57239/PJLSS-2024-22.2.001486
Mangaroska, K., Sharma, K., Gašević, D., & Giannakos, M. (2022). Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning, 38(1), 40–59. https://doi.org/10.1111/jcal.12590
Mason, A. J., & Singh, C. (2016). Impact of Guided Reflection with Peers on the Development of Effective Problem Solving Strategies and Physics Learning. The Physics Teacher, 54(5), 295–299. https://doi.org/10.1119/1.4947159
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). SAGE Publications.
NCTM. (2020). Standards for the Preparation of Secondary Mathematics Teachers. The National Council of Teachers of Mathematics, Inc., May.
Nilson, L. B., & Zimmerman, B. J. (2023). Creating Self-Regulated Learners. Routledge. https://doi.org/10.4324/9781003443803
Pihlap, S., Veermans, K., & Hannula-Sormunen, M. (2023). The Impact of the Use of the GeoGebra Dynamic Geometry Program on Students’ Understanding of the Concept of Linear Functions. International Journal for Technology in Mathematics Education, 30(4), 247–256. https://doi.org/10.1564/tme_v30.4.7
Polya, G. (1957). How to solve it: a new aspect of mathematical method second edition. In Princeton University Press: United States of America.
Saikia, H., & Roy, N. R. (2024). Fostering Critical Thinking Skills in Modern Learners. In Digital Skill Development for Industry 4.0 (pp. 46–51). Auerbach Publications. https://doi.org/10.1201/9781003504894-4
Schoenfeld, A. H. (1985). Mathematical Problem Solving. Academic Press.
Schunk, D. H. (2012). Learning theories: An educational perspective. In Reading (Vol. 5).
Schunk, D. H., & Pajares, F. (2002). The Development of Academic Self-Efficacy. In Development of Achievement Motivation (pp. 15–31). Elsevier. https://doi.org/10.1016/B978-012750053-9/50003-6
Serin, H. (2018). Perspectives on the Teaching of Geometry: Teaching and Learning Methods. Journal of Education and Training, 5(1), 1. https://doi.org/10.5296/jet.v5i1.12115
Shmigirilova, I. B., Rvanova, A. S., Tadzhigitov, A. A., & Beloshistova, Y. S. (2025). Advancing future mathematics teachers’ geometric thinking through a Van Hiele-based elementary geometry course. Journal on Mathematics Education, 16(3), 799–818. https://doi.org/10.22342/jme.v16i3.pp799-818
Sitthiworachart, J., Joy, M., King, E., Sinclair, J., & Foss, J. (2022). Technology-Supported Active Learning in a Flexible Teaching Space. Education Sciences, 12(9), 634. https://doi.org/10.3390/educsci12090634
Usher, E. L., & Pajares, F. (2020). The development of self-efficacy and its influence on academic achievement. Educational Psychologist, 55(4), 299–312.
Usiskin, Z. (1987). Resolving the continuing dilemmas in school geometry. In Learning and Teaching Geometry, K-12.
Wahyuni, R., Juniati, D., & Wijayanti, P. (2024). How do Math Anxiety and Self-Confidence Affect Mathematical Problem Solving? TEM Journal, 550–560. https://doi.org/10.18421/TEM131-58
Yi, S., & Jeon, H. (2023). Developing a Model of Problem-Based Learning for Fostering Technological Problem-Solving Ability. Journal of the Korean Institute of Industrial Educators, 48(2), 33–50. https://doi.org/10.35140/kiiedu.2023.48.2.33
Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview Theory into Practice. Journal of Educational Psychology, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mosharafa: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.