From Linearity to Iteration: Navigating Polya's Problem-Solving Stages in an e-PBL Geometry Environment

Authors

  • Arif Abdul Haqq UIN Siber Syekh Nurjati Cirebon
  • Sirojudin Wahid UIN Siber Syekh Nurjati Cirebon
  • Nurma Izzati UIN Siber Syekh Nurjati Cirebon
  • Onwardono Rit Riyanto Institut Prima Bangsa
  • Dionisio Aquino Alves Universidade Nacional Timor Lorosa'e
  • Sulistiawati Sulistiawati UIN Siber Syekh Nurjati Cirebon
  • Aditiya Eka Nugraha UIN Siber Syekh Nurjati Cirebon

DOI:

https://doi.org/10.31980/mosharafa.v15i1.3613

Keywords:

e-Problem-Based Learning, e-PBL, Pembelajaran Geometri, Penalaran multimodal, Tahapan pemecahan Polya, Geometry Learning, Multimodal Reasoning, Polya's problem-solving stages

Abstract

Penelitian ini mengkaji bagaimana mahasiswa mengalami dan memaknai tahapan pemecahan masalah Polya saat mengerjakan tugas geometri dalam lingkungan electronic Problem-Based Learning (e-PBL) yang diimplementasikan melalui sistem manajemen pembelajaran berbasis Moodle yang dikustomisasi. Penelitian ini menggunakan desain deskriptif kualitatif dengan sumber data berupa artefak pemecahan masalah tertulis, wawancara semi-terstruktur, dan jejak digital selama e-PBL. Data dianalisis menggunakan analisis tematik Braun dan Clarke dengan pengodean deduktif berdasarkan empat tahap Polya dan pengodean induktif untuk menangkap pola penalaran yang muncul. Hasil penelitian menunjukkan bahwa pemecahan masalah berlangsung secara dinamis dan rekursif. Tahap memahami dan merencanakan melibatkan penafsiran ulang representasi multimodal, sedangkan tahap pelaksanaan ditandai oleh pergeseran representasi yang memperjelas konsep. Prompt reflektif dalam e-PBL mendukung deteksi kesalahan dan penguatan konsep, serta menegaskan peran tahap evaluasi.

This study examines how students experience and interpret Polya’s problem-solving stages while working on geometry tasks in an electronic Problem-Based Learning (e-PBL) environment implemented through a customized Moodle based learning management system. Using a qualitative descriptive design, data were collected from written problem-solving artefacts, semi-structured interviews, and digital traces generated during e-PBL activities. The data were analyzed using thematic analysis following Braun and Clarke, combining deductive coding based on Polya’s four stages with inductive coding to capture emerging reasoning patterns. The findings indicate that problem-solving is enacted as a dynamic and recursive process rather than a linear sequence. Understanding and planning involve repeated reinterpretation of multimodal representations, while execution is characterized by representational shifts that support conceptual clarity. Reflective prompts in e-PBL facilitate error detection and conceptual consolidation, highlighting the importance of the evaluative stage.

References

Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., & Alibali, M. W. (2020). The future of embodied design for mathematics teaching and learning. Frontiers in Education, 5, 147. https://doi.org/10.3389/feduc.2020.00147

Adarsh, S., Shridhar, K., Gu̇lçehre, Ç., Monath, N., & Sachan, M. (2025). Siked: Self-guided iterative knowledge distillation for mathematical reasoning. Findings of the Association for Computational Linguistics: ACL 2025, 9868–9880. https://doi.org/10.48550/arXiv.2410.18574

Aksu, N., & Zengin, Y. (2022). Disclosure of students’ mathematical reasoning through collaborative technology-enhanced learning environment. Education and Information Technologies, 27(2), 1609–1634. https://doi.org/10.1007/s10639-021-10686-x

Bains, M., Kaliski, D. Z., & Goei, K. A. (2022). Effect of self-regulated learning and technology-enhanced activities on anatomy learning, engagement, and course outcomes in a problem-based learning program. Advances in Physiology Education, 46(2), 219–227. https://doi.org/10.1152/advan.00039.2021

Bjork, R. A., & Bjork, E. L. (2020). Desirable difficulties in theory and practice. Journal of Applied Research in Memory and Cognition, 9(4), 475. https://psycnet.apa.org/doi/10.1016/j.jarmac.2020.09.003

Borji, V., Radmehr, F., & Font, V. (2021). The impact of procedural and conceptual teaching on students’ mathematical performance over time. International Journal of Mathematical Education in Science and Technology, 52(3), 404–426. https://doi.org/10.1080/0020739X.2019.1688404

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806

Calcagni, E., Ahmed, F., Trigo-Clapés, A. L., Kershner, R., & Hennessy, S. (2023). Developing dialogic classroom practices through supporting professional agency: Teachers’ experiences of using the T-SEDA practitioner-led inquiry approach. Teaching and Teacher Education, 126, 104067. https://doi.org/https://doi.org/10.1016/j.tate.2023.104067

Camelo, G. E. H., Torres, J. M. T., Reche, M. P. C., & Costa, R. S. (2018). Using and integration of ICT in a diverse educational context of Santander (Colombia). JOTSE, 8(4), 254–267.

Casler-Failing, S. L. (2024). Facilitating Productive Struggle in an Online Secondary Education Mathematics Methods Course: Experiences of Pre-Service Teachers. Journal of Teaching and Learning, 18(1), 56–74. https://doi.org/10.22329/jtl.v18i1.7813

Caviola, S., Toffalini, E., Giofrè, D., Ruiz, J. M., Szűcs, D., & Mammarella, I. C. (2022). Math performance and academic anxiety forms, from sociodemographic to cognitive aspects: A meta-analysis on 906,311 participants. Educational Psychology Review, 34(1), 363–399. https://doi.org/10.1007/s10648-021-09618-5

Chang, D., Hwang, G.-J., Chang, S.-C., & Wang, S.-Y. (2021). Promoting students’ cross-disciplinary performance and higher order thinking: A peer assessment-facilitated STEM approach in a mathematics course. Educational Technology Research and Development, 69(6), 3281–3306. https://doi.org/10.1007/s11423-021-10062-z

Chang, H.-Y., Chung, C.-C., Cheng, Y.-M., & Lou, S.-J. (2022). A study on the development and learning effectiveness evaluation of problem-based learning (PBL) virtual reality course based on intelligence network and situational learning. Journal of Network Intelligence, 7(1), 1–20.

Demir, M., & Zengin, Y. (2023). The effect of a technology-enhanced collaborative learning environment on secondary school students’ mathematical reasoning: A mixed method design. Education and Information Technologies, 28(8), 9855–9883. https://doi.org/10.1007/s10639-023-11587-x

Engelbrecht, J., & Borba, M. C. (2024). Recent developments in using digital technology in mathematics education. ZDM–Mathematics Education, 56(2), 281–292. https://doi.org/10.1007/s11858-023-01530-2

Guo, Y., Liu, Z., Meng, X., & Yin, H. (2023). Unravelling the relationship between student engagement and learning outcomes in emergency online learning: A synthesis of quantitative and qualitative results. Assessment & Evaluation in Higher Education, 48(8), 1325–1338. https://psycnet.apa.org/doi/10.1080/02602938.2023.2214345

Haque, M. N. (2024). The Role of Multiple Representations and Attitudes in Enhancing Statistical and Mathematical Learning. Smart Internet of Things, 1(4), 298–312. https://doi.org/10.22105/siot.vi.52

Jelodari, Z., Zenouzagh, Z. M., & Hashamdar, M. (2025). Exploring PBL and e-PBL: implications for 21st-century skills in EFL education. Discover Education, 4(1), 311. https://doi.org/10.1007/s44217-025-00773-3

Jiang, L., & Ren, W. (2021). Digital multimodal composing in L2 learning: Ideologies and impact. Journal of Language, Identity & Education, 20(3), 167–182. http://doi.org/10.1080%2F15348458.2020.1753192

Kong, S.-C., Lee, J. C.-K., & Tsang, O. (2024). A pedagogical design for self-regulated learning in academic writing using text-based generative artificial intelligence tools: 6-P pedagogy of plan, prompt, preview, produce, peer-review, portfolio-tracking. Research and Practice in Technology Enhanced Learning, 19. https://doi.org/10.58459/rptel.2024.19030

Li, Y., Liang, M., Preissing, J., Bachl, N., Dutoit, M. M., Weber, T., Mayer, S., & Hussmann, H. (2022). A meta-analysis of tangible learning studies from the tei conference. Proceedings of the Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–17. https://doi.org/10.1145/3490149.3501313

Lindgren, R., & DeLiema, D. (2022). Viewpoint, embodiment, and roles in STEM learning technologies. Educational Technology Research and Development, 70(3), 1009–1034. https://psycnet.apa.org/doi/10.1007/s11423-022-10101-3

Martins, L. G., & Martinho, M. H. (2021). Strategies , Difficulties , and Written Communication in Solving a Mathematical Problem. 903–936. https://doi.org/10.1590/1980-4415v35n70a16

Milinković, N. (2025). A route to understanding symbols in algebra: from real-life situations to symbolic language. Nastava i Vaspitanje, 74(3). https://doi.org/10.5937/niv74-59019

Miller-Bains, K. L., Cohen, J., & Wong, V. C. (2022). Developing data literacy: Investigating the effects of a pre-service data use intervention. Teaching and Teacher Education, 109, 103569. https://doi.org/10.1016/j.tate.2021.103569

Motlhaka, H. (2020). Blackboard collaborated-based instruction in an academic writing class: Sociocultural perspectives of learning. Electronic Journal of E-Learning, 18(4), 337–346. https://doi.org/10.34190/EJEL.20.18.4.006

Pan, Z., & Liu, M. (2022). The role of adaptive scaffolding system in supporting middle school problem-based learning activities. Journal of Educational Technology Systems, 51(2), 117–145. https://doi.org/10.1177/00472395221133855

Piri, Z., & Cagiltay, K. (2024). Can 3-dimensional visualization enhance mental rotation (MR) ability?: A systematic review. International Journal of Human–Computer Interaction, 40(14), 3683–3698. https://awspntest.apa.org/doi/10.1080/10447318.2023.2196161

Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton university press.

Prabawanto, S. (2023). Improving prospective mathematics teachers’ reversible thinking ability through a metacognitive-approach teaching. Eurasia Journal of Mathematics, Science and Technology Education, 19(6), em2275. https://doi.org/10.29333/ejmste/13201

Santos-Trigo, M. (2024). Trends and developments of mathematical problem-solving research to update and support the use of digital technologies in post-confinement learning spaces. In Problem Posing and Problem Solving in Mathematics Education: International Research and Practice Trends (pp. 7–32). Springer. https://doi.org/10.1007/978-981-99-7205-0_2

Setyani, N. S., & Susilowati, L. (2022). The effect of e-problem based learning on students’ interest, motivation and achievement. International Journal of Instruction, 15(3), 503–518. https://doi.org/10.29333/iji.2022.15328a

Smith, B. (2018). Generalizability in qualitative research: Misunderstandings, opportunities and recommendations for the sport and exercise sciences. Qualitative Research in Sport, Exercise and Health, 10(1), 137–149. https://doi.org/10.1080/2159676X.2017.1393221

Steen-Utheim, A. T., & Foldnes, N. (2018). A qualitative investigation of student engagement in a flipped classroom. Teaching in Higher Education, 23(3), 307–324. https://psycnet.apa.org/doi/10.1080/13562517.2017.1379481

Türkoğlu, H., & Yalçınalp, S. (2024). Investigating problem-solving behaviours of university students through an eye-tracking system using GeoGebra in geometry: A case study. Education and Information Technologies, 29(12), 15761–15791. https://doi.org/10.1007/s10639-024-12452-1

Wagino, W., Maksum, H., Purwanto, W., Simatupang, W., Lapisa, R., & Indrawan, E. (2024). Enhancing Learning Outcomes and Student Engagement: Integrating E-Learning Innovations into Problem-Based Higher Education. International Journal of Interactive Mobile Technologies, 18(10). https://doi.org/10.3991/ijim.v18i10.47649

Wahab, A., Kusuma, Y. S., Juandi, D., Turmudi, T., Buhaerah, B., & Syaiful, S. (2024). Understanding Students’ Struggles in Solving Mathematical Problems: A Systematic Literature Review Using Polya’s Framework. Jurnal Pendidikan Progresif, 14(3), 1728–1753. http://doi.org/10.23960/jpp.v14.i3.2024118

Wilang, J. D., & Garcia, M. A. (2021). Evidence-based Smartphone Use among Engineering Students in an Academic Writing Course. International Journal of Emerging Technologies in Learning, 16(17), 267–276. https://doi.org/10.3991/ijet.v16i17.23949

Downloads

Published

2026-01-31

How to Cite

Haqq, A. A., Wahid, S., Izzati, N., Riyanto, O. R., Alves, D. A., Sulistiawati, S., & Nugraha, A. E. (2026). From Linearity to Iteration: Navigating Polya’s Problem-Solving Stages in an e-PBL Geometry Environment. Mosharafa: Jurnal Pendidikan Matematika, 15(1), 1–20. https://doi.org/10.31980/mosharafa.v15i1.3613

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.