Optimizing Algebraic Thinking using the Area Model Algebra Worksheet based on PhET Interactive Simulation

Authors

  • Adika Artasari Universitas Serang Raya
  • Rina Oktaviyanthi Universitas Serang Raya
  • Zahwatuzzukhrufiah Universitas Serang Raya
  • Nenden Delvianingsih Universitas Serang Raya

DOI:

https://doi.org/10.31980/plusminus.v4i2.1465

Keywords:

Algebraic multiplication, algebraic thinking ability, algebra worksheet, PhET interactive simulation, rectangle area concept, Kemampuan Berpikir Aljabar, Konsep Luas Persegi, Lembar Kerja Aljabar, Perkalian Aljabar, Simulasi Interaktif PhEt

Abstract

Penelitian ini bertujuan mengembangkan, memvalidasi dan menguji lapangan Area Model Algebra Worksheet berbasis Phet Interactive Simulation sebagai upaya optimalisasi berpikir aljabar siswa. Metode penelitian ini mengadaptasi prosedur penelitian pengembangan model ADDIE, terdiri dari fase Analysis, Design, Development, Implementation, dan Evaluating. Pengambilan data uji ahli menggunakan kuesioner dengan aspek substansi konsep aljabar, struktur lembar kerja yang dinilai, dan penggunaan bahasa. Pengambilan data uji coba terbatas dilakukan dengan pengisian lembar kerja yang telah divalidasi dan dinyatakan layak oleh validator ahli. Data uji ahli dianalisis menggunakan Statistika Q-Cochran dan data penggunaan lembar kerja oleh subjek penelitian dianalisis dengan Cronbach Alpha. Dari hasil uji Q-Cochran validasi lima orang ahli diperoleh nilai Asymp.Sig. = 0.539 > 0.05 untuk validitas muka dan nilai Asymp.Sig. = 0.707 > 0.05 untuk validitas isi yang mengindikasikan kelima orang validator menunjukkan pertimbangan yang seragam pada Area Model Algebra Worksheet berbasis Phet Interactive Simulation. Implikasinya, worksheet yang disusun memenuhi kelayakan untuk digunakan dalam membantu menyelesaikan masalah siswa pada konsep perkalian aljabar sekaligus menstimulasi kemampuan berpikir aljabar siswa. Adapun dari hasil uji terbatas dan uji lapangan pada 15 dan 65 orang siswa diperoleh perhitungan nilai r hitung > r kritis yang disimpulkan kelima butir worksheet valid dan reliabel.

The aim of this research is to develop, validate, and field test an Area Model Algebra Worksheet based on PhET Interactive Simulation as an effort to optimize students' algebraic thinking. The research method adapted the ADDIE model development procedure, which consists of the phases of Analysis, Design, Development, Implementation, and Evaluation. Data collection for expert validation used questionnaires assessing aspects of algebraic concept substance, worksheet structure, and language usage. Limited tests data were collected through the completion of validated worksheets considered appropriate by expert validators. Expert validation data were analyzed using the Q-Cochran statistic, and worksheet usage data by research subjects were analyzed using Cronbach's Alpha. The results of the Q-Cochran validation by five experts generated an Asymp.Sig. value of 0.539 > 0.05 for face validity and an Asymp.Sig. value of 0.707 > 0.05 for content validity, indicating that the five validators had consistent evaluations of the Area Model Algebra Worksheet based on PhET Interactive Simulation. The implication is that the developed worksheet meets the criteria for use in helping students solve algebraic multiplication problems while stimulating their algebraic thinking skills. Additionally, the results of limited and field tests with 15 and 65 students showed that the coefficient r values were greater than the critical r values, leading to the conclusion that the five items in the worksheet are valid and reliable.

References

Agus, R. N., & Oktaviyanthi, R. (2023). Worksheet Graphing Quadratics Berbantuan PhET Simulation Untuk Optimalisasi Mathematical Visual Thinking Mahasiswa. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(2).

Akbaş, E. E. (2021). Examining The Structure of Observed Learning Outcomes of Associate-Degree Vocational School Students in A CAS-Supported Environment: Limit-Continuous Sample. Education Quarterly Reviews, 4(2).

Barana, A. (2021). From Formulas to Functions Through Geometry: A Path To Understanding Algebraic Computations. European Journal of Investigation in Health, Psychology and Education, 11(4), 1485-1502.

Barbieri, C. A., & Booth, J. L. (2020). Mistakes on Display: Incorrect Examples Refine Equation Solving and Algebraic Feature Knowledge. Applied Cognitive Psychology, 34(4), 862-878.

Barbieri, C. A., & Miller-Cotto, D. (2021). The Importance of Adolescents' Sense of Belonging to Mathematics for Algebra Learning. Learning and Individual Differences, 87, 101993.

Brahier, D. (2020). Teaching Secondary and Middle School Mathematics. Routledge.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach (Vol. 722). New York: Springer.

Cai, J., & Hwang, S. (2022). Seeing Algebra in Arithmetic Through Mathematical Problem Posing. Journal of Educational Research in Mathematics, 32(3), 309-329.

Darmayanti, R., Baiduri, B., & Sugianto, R. (2022). Learning Application Derivative Algebraic Functions: Ethnomathematical Studies nd Digital Creator Books. Jurnal Cendekia: Jurnal Pendidikan Matematika, 6(2), 2212-2227.

Eriksson, H., & Sumpter, L. (2021). Algebraic and Fractional Thinking in Collective Mathematical Reasoning. Educational Studies in Mathematics, 108(3), 473-491.

Heffernan, N. T., & Koedinger, K. R. (2022, May). A Developmental Model for Algebra Symbolization: The Results of Difficulty Factors Assessment. In Proceedings of the twentieth annual conference of the cognitive science society (pp. 484-489). Routledge.

Keels, K. (2022). Early Algebra Instruction for Elementary Students with Mathematics Learning Difficulties. Doctoral dissertation: University of Georgia.

Kwon, H., & Capraro, M. M. (2021). Nurturing Problem Posing in Young Children: Using Multiple Representation Within Students’ Real-World Interest. International Electronic Journal of Mathematics Education, 16(3), em0648.

Lehtonen, D. (2022). Now I Get it!': Developing A Real-World Design Solution for Understanding Equation-Solving Concepts. Doctoral dissertation: Tampere University.

Litke, E. (2020). Instructional Practice in Algebra: Building from Existing Practices to Inform an Incremental Improvement Approach. Teaching and Teacher Education, 91, 103030.

Lourens, I. (2022). A Systematic Analysis of The Generalisation Concept in Early Algebra for Young Learners–Some Ideas for The Classroom. Doctoral dissertation, Stellenbosch: Stellenbosch University.

Manandhar, N. K., Pant, B. P., & Dawadi, S. D. (2022). Conceptual and Procedural Knowledge of Students of Nepal in Algebra: A Mixed Method Study. Contemporary Mathematics and Science Education, 3(1), 1-10.

Melhuish, K., Lew, K., & Hicks, M. (2022). Comparing Student Proofs to Explore a Structural Property in Abstract Algebra. PRIMUS, 32(1), 57-73.

Namkung, J. M., & Bricko, N. (2021). The Effects of Algebraic Equation Solving Intervention for Students with Mathematics Learning Difficulties. Journal of Learning Disabilities, 54(2), 111-123.

Oktaviyanthi, R., & Agus, R. N. (2021). Guided Worksheet Formal Definition of Limit: An Instrument Development Process. AL-ISHLAH: Jurnal Pendidikan, 13(1), 449-461.

Oktaviyanthi, R., & Sholahudin, U. (2023). PhET Assisted Trigonometric Worksheet for Students’ Trigonometric Adaptive Thinking. Mosharafa: Jurnal Pendidikan Matematika, 12(2), 229-242.

Oktaviyanthi, R., & Agus, R. N. (2023). Evaluating Graphing Quadratic Worksheet on Visual Thinking Classification: A Confirmatory Analysis. Infinity Journal, 12(2), 207-224.

Peker, B., & Acar, S. (2022). Algebra and Algebraic Thinking. Current Studies in Social Sciences, 191.

Roni, S. M., Merga, M. K., & Morris, J. E. (2020). Conducting Quantitative Research in Education. Berlin/Heidelberg, Germany: Springer.

Sholahudin, U., & Oktaviyanthi, R. (2023). The Trigonometric Adaptive Worksheet Performance in Optimizing Trigonometric Thinking of Prospective Mathematics Teacher: Single Subject Research. Jurnal Didaktik Matematika, 10(2), 250-265.

Spatioti, A. G., Kazanidis, I., & Pange, J. (2022). A Comparative Study of the ADDIE Instructional Design Model in Distance Education. Information, 13(9), 402.

Tong, C. K. Y., Yip, E. S. K., & Wong, T. T. Y. (2023). Examining The Unique Contributions and Developmental Stability of Individual Forms of Relational Reasoning to Mathematical Problem Solving. Contemporary Educational Psychology, 73, 102181.

Vlassis, J., & Demonty, I. (2022). The Role of Algebraic Thinking in Dealing with Negative Numbers. ZDM–Mathematics Education, 54(6), 1243-1255.

Yang, D. C., & Sianturi, I. A. J. (2022). Analysis of Algebraic Problems Intended for Elementary Graders in Finland, Indonesia, Malaysia, Singapore, and Taiwan. Educational Studies, 48(1), 75-97.

Zainudin, M., & Utami, A. D. (2022). The Sequence of Algebraic Problem-Solving Paths: Evidence from Structure Sense of Indonesian Student. Journal on Mathematics Education, 13(3), 437-464.

Downloads

Published

2024-07-30

How to Cite

Artasari, A., Oktaviyanthi, R., Zahwatuzzukhrufiah, & Delvianingsih, N. (2024). Optimizing Algebraic Thinking using the Area Model Algebra Worksheet based on PhET Interactive Simulation. Plusminus: Jurnal Pendidikan Matematika, 4(2), 241–254. https://doi.org/10.31980/plusminus.v4i2.1465

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.