Integration And Evaluation of Computational Thinking in Mathematics Education: A Systematic Review of Research 2016-2025
DOI:
https://doi.org/10.31980/mosharafa.v14i4.3548Keywords:
Mathematics Education, Computational Thinking, Assessment, Pendidikan MatematikaAbstract
Penelitian ini bertujuan memetakan bagaimana computational thinking (CT) diintegrasikan dalam pendidikan matematika serta bagaimana CT dan hasil belajar matematika dievaluasi dalam studi empiris terindeks Scopus periode 2016–2025. Tinjauan disusun mengikuti pedoman PRISMA 2020 melalui penelusuran Scopus; penelusuran awal menghasilkan 149 artikel dan 54 artikel memenuhi kriteria inklusi untuk dianalisis. Data diekstraksi lalu dianalisis menggunakan analisis deskriptif dan tematik untuk mengidentifikasi pola integrasi CT–matematika dan pendekatan evaluasinya. Hasil menunjukkan tren publikasi meningkat dengan puncak produktivitas sekitar 2022–2023. Sebaran penelitian didominasi konteks Global North, sehingga transfer model integrasi ke konteks berdaya dukung terbatas perlu dikaji lebih hati-hati. Integrasi CT paling sering berorientasi alat. Dari sisi evaluasi, studi menggunakan beragam asesmen, namun ditemukan ketidakkonsistenan indikator CT dan capaian matematika, penggunaan instrumen yang berdiri terpisah, serta keterbatasan validasi lintas konteks dan jenjang pendidikan, sehingga asesmen autentik yang secara eksplisit mengukur keterkaitan CT dan capaian matematika dalam satu kerangka tugas masih terbatas. Temuan ini menegaskan perlunya pergeseran dari integrasi yang tool-driven menuju concept-driven serta pengembangan asesmen CT–matematika yang lebih autentik dan adaptif, termasuk untuk konteks Indonesia.
This study mapped how computational thinking (CT) has been integrated into mathematics education and how CT and mathematics learning outcomes have been evaluated in empirical Scopus-indexed research from 2016 to 2025. A systematic review was conducted following PRISMA 2020 guidelines. The initial search retrieved 149 records, and 54 studies met the inclusion criteria for analysis. Data were extracted and analyzed using descriptive and thematic approaches. Findings show a rising publication trend with peak productivity around 2022–2023. Studies were dominated by Global North contexts, raising concerns about transferability to resource-limited settings. CT integration was most often tool-oriented, while unplugged and concrete-manipulative approaches emerged as feasible alternatives. From an assessment perspective, studies employed diverse approaches; however, inconsistencies in CT and mathematics indicators, fragmented measurement of the two domains, and limited cross-context and cross-level validation were evident, indicating that authentic assessments jointly capturing CT and mathematics achievement within a single task framework remain scarce.
References
Acevedo-Borrega, J. (2022). Computational Thinking and Educational Technology: A Scoping Review of the Literature. Education Sciences, 12(1). https://doi.org/10.3390/educsci12010039
Adnan, N., Abdullah, S. N. H. S., Yusof, R. J. R (2023). A Systematic Literature Review in , Zainal, N. F. A., Qamar, F., Yadegaridehkordi, E. A Systematic Literature Review in Robotics Experiential Learning With Computational and Adversarial Thinking. IEEE Access, 11, 44806–44827. https://doi.org/10.1109/ACCESS.2023.3249761
Agbo, F. J., Olaleye, S. A., Bower, M., & Oyelere, S. S. (2023). Examining the relationships Between Students’ Perceptions Of Technology, Pedagogy, and Cognition: The Case of Immersive Virtual Reality Mini Games to Foster Computational Thinking in Higher Education. Smart Learning Environments, 10(1), 16.
https://doi.org/10.1186/s40561-023-00233-1
Álvaro Molina-Ayuso, Natividad Adamuz-Povedano, Rafael Bracho-López, & Manuel Torralbo-Rodríguez. (2022). Introduction to Computational Thinking with Scratch for Teacher Training for Spanish Primary School Teachers in Mathematics. Education Sciences, 12(12), 899.
https://doi.org/10.3390/educsci12120899
Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing The Development of Computational Thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association, 1, 25 p.
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
Chen, G. (2017). Assessing Elementary Students’ Computational Thinking in Everyday Reasoning and Robotics Programming. Computers and Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001
Chou, P. N. (2020). Using ScratchJr to Foster Young Children’s Computational Thinking Competence: A Case Study in a Third-Grade Computer Class. Journal of Educational Computing Research, 58(3), 570–595.
https://doi.org/10.1177/0735633119872908
Clarke-Midura, J. (2021). Developing a Kindergarten Computational Thinking Assessment Using Evidence-Centered Design: The Case of Algorithmic Thinking. Computer Science Education, 31(2), 117–140.
https://doi.org/10.1080/08993408.2021.1877988
Clarke-Midura, J., Lee, V. R., Shumway, J. F., Silvis, D., Kozlowski, J. S., & Peterson, R. (2023). Designing Formative Assessments of Early Childhood Computational Thinking. Early Childhood Research Quarterly, 65, 68–80. https://doi.org/10.1016/j.ecresq.2023.05.013
Cutumisu, M., Adams, C., & Lu, C. (2019). A Scoping Review of Empirical Research on Recent Computational Thinking Assessments. Journal of Science Education and Technology, 28(6), 651–676. https://doi.org/10.1007/s10956-019-09799-3
Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. G. (2016). Computational Thinking, Grade 1 Students and the Binomial Theorem. Digital Experiences in Mathematics Education, 3(2), 77–96. https://doi.org/10.1007/s40751-016-0019-3
Guggemos, J., Seufert, S., & Román-González, M. (2023). Computational Thinking Assessment – Towards More Vivid Interpretations. Technology, Knowledge and Learning, 28(2), 539–568. https://doi.org/10.1007/s10758-021-09587-2
Hadad, R., Thomas, K., Kachovska, M., & Yin, Y. (2020). Practicing Formative Assessment for Computational Thinking in Making Environments. Journal of Science Education and Technology, 29(1), 162–173. https://doi.org/10.1007/s10956-019-09796-6
Humble, N., & Mozelius, P. (2023). Grades 7–12 Teachers’ Perception of Computational Thinking for Mathematics and Technology. Frontiers in Education, 8, 956618. https://doi.org/10.3389/feduc.2023.956618
Kong, S.-C., & Wang, Y.-Q. (2023). Monitoring Cognitive Development Through The Assessment Of Computational Thinking Practices: A Longitudinal Intervention On Primary School Students. Computers in Human Behavior, 145, 107749.
https://doi.org/10.1016/j.chb.2023.107749
Kong, W., Chen, H., Leng, Y., & Dong, J. (2023). Development Paths of Senior High School Students’ Mathematical Modeling Capability Based on Core Literacy. Journal of Advanced Research in Education, 2(2), 1–6.
https://doi.org/10.56397/jare.2023.03.01
Lavigne, H. J., Lewis-Presser, A., & Rosenfeld, D. (2020). An Exploratory Approach for Investigating the Integration of Computational Thinking and Mathematics for Preschool Children. Journal of Digital Learning in Teacher Education, 36(1), 63–77. https://doi.org/10.1080/21532974.2019.1693940
Maharani, S. (2019). Problem Solving in The Context of Computational Thinking. Infinity Journal, 8(2), 109–116. https://doi.org/10.22460/infinity.v8i2.p109-116
Relkin, E. (2020). TechCheck: Development and Validation of an Unplugged Assessment of Computational Thinking in Early Childhood Education. Journal of Science Education and Technology, 29(4), 482–498.
https://doi.org/10.1007/s10956-020-09831-x
Relkin, E. (2023). A Normative Analysis of the TechCheck Computational Thinking Assessment. Educational Technology and Society, 26(2), 118–130. https://doi.org/10.30191/ETS.202304_26(2).0009
Rich, K. M. (2020). Synergies and Differences in Mathematical and Computational Thinking: Implications for integrated Instruction. Interactive Learning Environments, 28(3), 272–283. https://doi.org/10.1080/10494820.2019.1612445
Shute, V., Sun, C., & Asbell-Clarke, J. (2017). Demystifying Computational Thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
Sung, W. (2017). Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education. Technology, Knowledge and Learning, 22(3), 443–463. https://doi.org/10.1007/s10758-017-9328-x
Sung, W. (2020). Factors to Consider When Designing Effective Learning: Infusing Computational Thinking in Mathematics to Support Thinking-Doing. Journal of Research on Technology in Education, 53(4), 404–426. https://doi.org/10.1080/15391523.2020.1784066
Wang, J. (2022). Exploring the Characteristics of an Optimal Design of Non-Programming Plugged Learning For Developing Primary School Students’ Computational Thinking in Mathematics. Educational Technology Research and Development, 70(3), 849–880. https://doi.org/10.1007/s11423-022-10093-0
Weintrop, D., Subramaniam, M., Morehouse, S., & Koren, N. (2022). The State of Computational Thinking in Libraries. Technology, Knowledge and Learning, 28(3), 1301–1324. https://doi.org/10.1007/s10758-022-09606-w
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Wing, J. M. (2008). Computational Thinking and Thinking About Computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Yang, D. (2022). A Collaborative Approach to Integrate Computational Thinking in an Integrated STEM Curriculum. IEEE Integrated STEM Education Conference, ISEC 2022, 238–240. https://doi.org/10.1109/ISEC54952.2022.10025038
Ye, H., Liang, B., Ng, O.-L., & Chai, C. S. (2023). Integration of Computational Thinking in K-12 Mathematics Education: A Systematic Review on CT-Based Mathematics Instruction and Student Learning. International Journal of STEM Education, 10(1), 3. https://doi.org/10.1186/s40594-023-00396-w
Ye, J., Lai, X., & Wong, G. K. (2022). The Transfer Effects of Computational Thinking: A Systematic Review With Meta‐Analysis and Qualitative Synthesis. Journal of Computer Assisted Learning, 38(6), 1620–1638. https://doi.org/10.1111/jcal.12723
Zapata, J. M., Jameson, E., Zapata Ros, M., & Merrill, D. (2021). El Principio de Activación en el Pensamiento Computacional, las Matemáticas y el STEM: Presentación del número especial. Revista de Educación a Distancia (RED), 21(68). https://doi.org/10.6018/red.498531
Zeng, Y., Yang, W., & Bautista, A. (2023). Corrigendum: Teaching Programming and Computational Thinking in Early Childhood Education: A Case Study of Content Knowledge and pedagogical Knowledge. Frontiers in Psychology, 14, 1342297.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mosharafa: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.