Rethinking How We Teach Derivatives Representation: The Framework of Hypothetical Learning Trajectory

Authors

  • Aditya Prihandhika Universitas Singaperbangsa Karawang
  • Nur Azizah Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.31980/plusminus.v5i2.2816

Keywords:

Hypothetical Learning Trajectory, Derivative Concept, Representation, Konsep Turunan, Representasi

Abstract

Konsep turunan merupakan prinsip dasar dalam Kalkulus untuk pengajaran matematika di tingkat sekolah dan universitas. Namun demikian, definisi yang mencakup beberapa representasi terkadang membuat konsep turunan sangat sulit dipahami. Tujuan penelitian ini adalah untuk mengkaji representasi konsep turunan yang dipahami oleh partisipan. Penelitian ini menggunakan metodologi kualitatif untuk menyelidiki fenomena tertentu. Data penelitian dikumpulkan melalui wawancara klinis yang dilakukan terhadap mahasiswa (N=5) dari salah satu universitas di Provinsi Jawa Barat. Teknik analisis data menggunakan triangulasi meliputi reduksi data, analisis data, dan penarikan kesimpulan. Temuan penelitian ini menunjukkan bahwa representasi konsep turunan bagi banyak partisipan masih terbatas pada konteks simbolis untuk memecahkan masalah prosedural. Representasi yang terbatas dapat menimbulkan hambatan epistemologis dalam menyelesaikan masalah konseptual. Temuan ini menjadi dasar untuk mengembangkan Hypothetical Learning Trajectory (HLT) yang mencakup tujuan, prakiraan proses pembelajaran, dan aktivitas untuk mendorong terciptanya pemahaman melalui representasi konsep yang beragam.

The concept of a derivative is a fundamental principle in calculus that is essential for teaching mathematics at both the school and university levels. Nevertheless, definitions encompassing several representations sometimes render the concept of derivatives exceedingly challenging to comprehend. The objective of this research is to examine the representation of the derived notion as seen by the participants. The study employs qualitative methodologies through a case study framework to investigate certain phenomena. Research data collected via clinical interviews conducted with students (N=5) from a university in West Java Province. The data analysis technique using triangulation includes several stages, namely data reduction, data analysis, and drawing conclusions. The findings of this study suggest that the representation of derived concepts for many of participants remains confined to a symbolic context for solving procedural difficulties. The restricted representation can create epistemological obstacles in resolving conceptual issues. These findings serve as the foundation for developing a Hypothetical Learning Trajectory (HLT) design that encompasses objectives, forecasts of the learning process, and activities to promote the creation of understanding through diverse representations of concepts.

References

Astuti, S. A. B., Siregar, R. N., & Rangkuti, R. K. (2025). Analysis of Students’ Mathematical Critical Thinking in Solving Function Derivative Problems based on Gender Differences. JIML: Journal of Innovative Mathematics Learning, 8(1), 188-199.

Brousseau, G. (2002). Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970–1990. Dordrecht: Springer Netherlands.

Carli, M., Lippiello, S., Pantano, O., Perona, M., & Tormen, G. (2020). Testing Students Ability to Use Derivatives, Integrals, and Vectors in a Purely Mathematical Context and in a Physical Context. Physical Review Physics Education Research, 16(1), 010111.

Chen, C. L., & Wu, C. C. (2020). Students’ Behavioral Intention to use and Achievements in ICT-Integrated Mathematics Remedial Instruction: Case Study of a Calculus Course. Computers & Education, 145, 103740.

Cho, H., & Kwon, O. N. (2023). Undergraduate Students' Understanding of the Concept of Derivatives in Multivariable Calculus. In 46th Annual Conference of the International Group for the Psychology of Mathematics Education, PME 2023 (pp. 187-194). Psychology of Mathematics Education (PME).

Clements, D. H., Sarama, J. (2014). Learning and Teaching Early Math: The Learning Trajectories Approach. Routledge.

Creswell, J. W. (2015). Revisiting mixed methods and advancing scientific practices. The Oxford handbook of multimethod and mixed methods research inquiry. Oxford Library of Psychology.

Destiniar, D., Rohana, R., & Ardiansyah, H. (2021). Pengembangan Media Pembelajaran Berbasis Aplikasi Android Pada Materi Turunan Fungsi Aljabar. Aksioma: Jurnal Program Studi Pendidikan Matematika, 10(3), 1797-1808

Feudel, F., & Biehler, R. (2021). Students’ Understanding of the Derivative Concept in the Context of Mathematics for Economics. Journal für Mathematik-Didaktik, 42(1), 273-305.

García-García, J., & Dolores-Flores, C. (2021). Exploring Pre-University Students’ Mathematical Connections when Solving Calculus Application Problems. International Journal of mathematical education in science and technology, 52(6), 912-936.

García-García, J., & Dolores-Flores, C. (2021). Pre-University Students’ Mathematical Connections when Sketching the Graph of Derivative and Antiderivative Functions. Mathematics Education Research Journal, 33, 1-22.

Gravemeijer, K. (2004). Local Instruction Theories as Means of Support for Teacher in Reform Mathematics Education. Mathematical Thinking and Learning, Lawrence Erlbaum Associations, Inc., 6 (2), 105–128.

Gravemeijer, K., & Cobb, P. (2006). Design Research from a Learning Design Perspective. In J. van den Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational Design Research (pp. 17-51). London: Routledge.

Greefrath, G., Oldenburg, R., Siller, H. S., Ulm, V., & Weigand, H. G. (2023). Mathematics Students’ Characteristics of Basic Mental Models of the Derivative. Journal für Mathematik-Didaktik, 44(1), 143-169.

Hunting, R. P. (1997). Clinical Interview Methods in Mathematics Education Research and Practice. The Journal of Mathematical Behavior, 16(2) 145–165. https://doi:10.1016/S0732-3123(97)90023-7.

Ivars, P., Fernández, C., & Llinares, S. (2020). A Learning Trajectory as a Scaffold for Pre-Service Teachers’ Noticing of Students’ Mathematical Understanding. International Journal of Science and Mathematics Education, 18(3), 529-548.

Jahangiri, J., Oxman, V., & Stupel, M. (2022). Testing the NCTM 2020 Standards using Rigorous Mathematics and Multiple Solutions to a Single Geometric Problem. Resonance, 27(6), 1061-1077.

Jamilah, Suryadi, D., & Priatna, N. (2020). Didactic Transposition from Scholarly Knowledge of Mathematics to School Mathematics on Sets Theory. In Journal of Physics: Conference Series, 1521, p. 032093

Kidron, I. (2020). Calculus teaching and learning. Encyclopedia of mathematics education, 87-94.

Lefrida, R., Siswono, T. Y. E., & Lukito, A. (2021). A commognitive Study on Field-dependent students’ Understanding of Derivative. In Journal of Physics: Conference Series, 1747(1), p. 012025.

Martínez-Planell, R., & Trigueros, M. (2021). Multivariable Calculus Results in Different Countries. ZDM–Mathematics Education, 53(3), 695-707.

Mkhatshwa, T. P. (2024). Best Practices for Teaching the Concept of the Derivative: Lessons from Experienced Calculus Instructors. EURASIA: Journal of Mathematics, Science and Technology Education, 20(4), em2426.

Moru. (2020). An APOS Analysis of University Students’ Understanding of Derivatives: A Lesotho Case Study. African Journal of Research in Mathematics, Science and Technology Education, 279–292. https://doi:10.1080/18117295.2020.1821500

Nıeto, C. R., Rodríguez, F., & García, J. G. (2021). Pre-Service Mathematics Teachers’ Mathematical Connections in the Context of Problem-Solving about the Derivative. TURCOMAT: Turkish Journal of Computer and Mathematics Education, 12(1), 202-220.

Nurwahyu, B., & Tinungki, G. M. (2020). Students' Concept Image and Its Impact on Reasoning towards the Concept of the Derivative. European Journal of Educational Research, 9(4), 1723–1734. https://doi:10.12973/eu-jer.9.4.1723

Prihandika, A., & Perbowo, K. S. (2024). The Review of Concept Image and Concept Definition: A Hermeneutic Phenomenological Study on the Derivative Concepts. International Journal of Didactic Mathematics in Distance Education, 1(1), 13-23.

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Moll, V. F. (2022). A New View about Connections: The Mathematical Connections Established by a Teacher when Teaching the Derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256.

Roundy, D., Dray, T., Manogue, C. A., Wagner, J. F., & Weber, E. (2015). An Extended Theoretical Framework for the Concept of Derivative. In Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education, 838–843.

Sari, F. Y., Zulkardi, Z., Putri, R. I. I., & Susanti, E. (2025). Learning Trajectory of Rate Material Using the Context of Plowing Rice Fields. Plusminus: Jurnal Pendidikan Matematika, 5(1), 141-154.

Shirawia, N., Qasimi, A., Tashtoush, M., Rasheed, N., Khasawneh, M., & Az-Zo’bi, E. (2024). Performance Assessment of the Calculus Students by Using Scoring Rubrics in Composition and Inverse Function. Applied Mathematics and Information Sciences, 18(5), 1037-1049.

Simon, M. A. & Tzur, R. (2014). Explicating the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning 6, 91–104. https://doi.org/10.1207/s15327833mtl0602_2

Thompson, P. W., & Harel, G. (2021). Ideas Foundational to Calculus Learning and Their Links to Students’ Difficulties. ZDM–Mathematics education, 53(3), 507-519.

Utari, R. S., Putri, R. I. I., Zulkardi, Z., & Hapizah, H. (2025). Bridging Theory and Practice: A Literature Review on Learning Trajectories in Statistical Literacy Instruction. Plusminus: Jurnal Pendidikan Matematika, 5(1), 1-16.

Zandieh, M. (2000). A Theoretical Framework for Analyzing Student Understanding of the Concept of Derivative. CBMS Issues in Mathematics Education, 8, 103-127.

Downloads

Published

2025-07-14

How to Cite

Prihandhika, A., & Azizah, N. (2025). Rethinking How We Teach Derivatives Representation: The Framework of Hypothetical Learning Trajectory. Plusminus: Jurnal Pendidikan Matematika, 5(2), 315–326. https://doi.org/10.31980/plusminus.v5i2.2816

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.