STEM for the 21st Century: Building a Stronger Workforce for the Digital Age

Authors

  • Warsito Tangerang Muhammadiyah University
  • Nur Choiro Siregar Tangerang Muhammadiyah University
  • Aris Gumilar Tangerang Muhammadiyah University
  • Roslinda Rosli National University of Malaysia

DOI:

https://doi.org/10.31980/mosharafa.v12i4.1199

Keywords:

Era digital, Pertumbuhan ekonomi, Inovasi, Pendidikan STEM, Pengembangan tenaga kerja, Digital age, Economic growth, Innovation, STEM education, Workforce development

Abstract

Di abad ke-21, pendidikan Sains, Teknologi, Teknik, dan Matematika (STEM) memainkan peran penting dalam membangun tenaga kerja yang kuat untuk era digital. Bidang STEM sangat penting untuk inovasi, pertumbuhan ekonomi, dan daya saing global. Namun, ada kekurangan tenaga profesional terampil di bidang STEM, yang merupakan tantangan besar bagi bisnis dan industri. Era digital telah mengantarkan teknologi baru dan tuntutan akan pekerja terampil dengan pengetahuan dan keahlian mutakhir. Oleh karena itu, sangat penting untuk mempromosikan pendidikan STEM dan mendorong siswa untuk mengejar karir STEM. Penelitian ini menggunakan metode kualitatif yang melibatkan empat dosen dengan teknik pengumpulan data secara wawancara. Hasil penelitian dapat dicapai dengan menyediakan pendidikan STEM berkualitas tinggi, menyempurnakan kurikulum, melibatkan siswa dalam kegiatan pembelajaran langsung, dan mengembangkan kemitraan antara industri dan akademisi. Kesimpulannya, berinvestasi dalam pendidikan STEM sangat penting untuk membangun tenaga kerja yang lebih kuat di era digital dan memastikan bahwa individu dan komunitas berkembang dalam ekonomi abad ke-21. Implikasi dari penelitian ini menyoroti meningkatnya permintaan akan tenaga kerja STEM yang kuat di era digital, menekankan kebutuhan untuk memprioritaskan prakarsa pendidikan dan pelatihan STEM. Pembuat kebijakan harus mengalokasikan sumber daya untuk meningkatkan kurikulum STEM, mempromosikan pengalaman belajar langsung, dan mendorong kolaborasi antara lembaga pendidikan dan mitra industri. Selain itu, pendidik harus fokus pada pengembangan keterampilan berpikir kritis, pemecahan masalah, dan literasi digital di kalangan siswa untuk mempersiapkan mereka menghadapi pasar kerja yang berkembang. Perusahaan harus berpartisipasi aktif dalam membentuk program pendidikan STEM, menyediakan magang, dan peluang bimbingan untuk menjembatani kesenjangan keterampilan dan menumbuhkan tenaga kerja yang sangat terampil. Penelitian mungkin mengandalkan ukuran sampel yang terbatas atau wilayah geografis tertentu, yang dapat mempengaruhi generalisasi temuan. Selain itu, fokus studi pada tenaga kerja era digital mungkin mengabaikan sektor penting lainnya atau kemajuan teknologi di masa depan. Selain itu, penelitian tidak mempertimbangkan pengaruh perbedaan budaya, sosial ekonomi, dan gender pada pendidikan STEM dan pengembangan tenaga kerja. Studi masa depan harus bertujuan untuk mengatasi keterbatasan.

In the 21st century, Science, Technology, Engineering, and Mathematics (STEM) education is critical in building a strong workforce for the digital age. The STEM field is crucial to innovation, economic growth, and global competitiveness. However, a shortage of skilled professionals in the STEM field is a massive challenge for business and industry. The digital era has ushered in new technologies and demands for skilled workers with up-to-date knowledge and expertise. Therefore, promoting STEM education and encouraging students to pursue STEM careers is imperative. This study used a qualitative method involving four lecturers with interview data collection techniques. Research outcomes can be achieved by providing high-quality STEM education, enhancing curricula, engaging students in hands-on learning activities, and developing partnerships between industry and academia. In conclusion, investing in STEM education is critical to building a more robust workforce in the digital age and ensuring that individuals and communities thrive in the 21st-century economy. The implications of this research highlight the growing demand for a strong STEM workforce in the digital age, emphasizing the need to prioritize STEM education and training initiatives. Policymakers should allocate resources to improve STEM curricula, promote hands-on learning experiences, and encourage collaboration between educational institutions and industry partners. In addition, educators should focus on developing critical thinking, problem-solving and digital literacy skills among students to prepare them for the evolving job market. Companies should actively participate in establishing STEM education programs, providing internships and mentorship opportunities to bridge skills gaps and cultivate a highly skilled workforce. Studies may rely on limited sample sizes or specific geographic areas, which can affect the generalizability of the findings. In addition, the focus of studies on the digital age workforce may need to pay more attention to other essential sectors or future technological advances. In addition, the research does not consider the influence of cultural, socioeconomic, and gender differences on STEM education and workforce development. Future studies should aim to overcome the limitations.

References

Barton, A. C., & Tan, E. (2020). Toward a theory of equitable STEM teaching practices: A synthesis of research. Journal of Research in Science Teaching, 57(6), 805-832.

Bracke, M. S., & Henningsen, I. S. (2019). Interdisciplinary teaching in STEM education: An exploratory case study on boundary-crossing practices. International Journal of Science Education, 41(15), 2139-2159.

Brown, M., Brown, C., & Reardon, K. (2019). STEM: The need for increased funding in America. Technology and Engineering Teacher, 79(2), 20–25.

Byars-Winston, A., Gutierrez, B., Topp, S., & Carnes, M. (2020). Integrating theory, content, and method to foster critical consciousness in STEM: A paradigm for intersectionality. Journal of Women and Minorities in Science and Engineering, 26(4), 313-339.

Bybee, R. W. (2018). The case for STEM education: Challenges and opportunities. NSTA Press.

Bybee, R. W. (2020). Advancing STEM education: A 2020 Vision. Technology and Engineering Teacher, 79(7), 8–11.

Chen, X., & Wang, M. (2019). The impact of project-based learning on promoting STEM education for students with learning disabilities. Journal of STEM Education: Innovations and Research, 20(5), 38-45.

Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender-balanced than others? Psychological Bulletin, 143(1), 1-35.

Chong, H. Y., & Merkley, E. (2020). The impact of apprenticeship and pre-apprenticeship programs on earnings and employment outcomes. Journal of Labor Economics, 38(1), 1–43.

Cropley, A. J. (2019). Fostering creativity in STEM: From potential to achievement. Palgrave Macmillan.

Education Commission of the States. (2021). STEM education policy and practice: A review of the literature.

Gachago, D., Bontoux, L., & Shihundla, R. (2017). Barriers to integrating ICT in higher education in South Africa. British Journal of Educational Technology, 48(5), 1137-1153.

Hislop, G. (2019). New approaches to work-based learning in the digital age: A case study of digital degree apprenticeships. European Journal of Training and Development, 43(5/6), 576–590.

Institute of International Education. (2020). Global learning in college: A review of contemporary literature.

Johnson, A. (2018). The underrepresentation of women of color in STEM: Its impact on academic medicine and the role of professional societies in taking a stand. Academic Medicine, 93(8), 1151–1153.

Johnson, C. C., & Kean, E. L. (2018). Motivating students in STEM fields: The role of personal relevance. Science Education, 102(6), 1374–1395.

Kennedy, G., & Ranmuthugala, D. (2021). COVID-19 and online learning: Opportunities, challenges, and implications for higher education. International Journal of Educational Technology in Higher Education, 18(1), 39.

Khan, M. S. U. D., Hasan, M. T., Clement, C. K., & Dhuliawala, M. R. (2020). Digital technology adoption in higher education: A case of the COVID-19 pandemic. Journal of Applied Research in Higher Education, 12(5), 1122-1137.

Kobsa, A., & Teltzrow, M. (2021). Algorithmic fairness in practice: Challenges and solutions for artificial intelligence researchers and practitioners. Artificial Intelligence, 300, 103543.

Lachapelle, C. P., Cunningham, C. M., & Lindgren-Streicher, A. (2019). The role of STEM education in preparing the 21st-century workforce: A literature review. Journal of STEM Education: Innovations and Research, 20(3), 5-14.

Liao, Y. K., & Vu, L. H. (2021). Work-based learning for engineering undergraduates: Developing an apprenticeship program with industry partners. European Journal of Engineering Education, 46(3), 389-404.

Maritz, A., & Brown, C. (2017). The Role of entrepreneurship education in the Employability of engineering graduates. Education + Training, 59(8/9), 912–927.

National Academies of Sciences, Engineering, and Medicine. (2018). Building capacity for STEM education research: National Academies Press.

National Academies of Sciences, Engineering, and Medicine. (2018). Science and Engineering for Grades 6-12: Investigation and Design at the Center. National Academies Press.

National Academies of Sciences, Engineering, and Medicine. (2018). Graduate STEM education for the 21st century. National Academies Press.

National Academies of Sciences, Engineering, and Medicine. (2018). Data science for undergraduate education: Proceedings of a workshop. National Academies Press.

National Academies of Sciences, Engineering, and Medicine. (2020). Building capacity for collaboration: Supporting scientists to participate in policy and practice. National Academies Press.

National Science Board. (2018). Science and engineering indicators 2018. National Science Foundation.

National Science Foundation. (2019). Harnessing the data revolution: Data science core programs.

National Science Foundation. (2019). Science and engineering indicators 2020.

National Science Foundation. (2020). Convergence: Facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond.

National Science Foundation. (2020). Future STEM workforce: Ensuring the relevance of STEM education for the future workforce.

National Science Foundation. (2020). Women, minorities, and persons with disabilities in science and engineering: 2020.

National Science Foundation. (2021). Advancing diversity, equity, and inclusion in the sciences.

OECD. (2019). Teaching and learning international survey (TALIS) 2018. OECD Publishing.

Rahman, N. A., Rosli, R., Rambely, A. S., Siregar, N. C., Capraro, M. M., & Capraro, R. M. (2022). Secondary school teachers’ perceptions of STEM pedagogical content knowledge. Journal on Mathematics Education, 13(1), 119–134. https://doi.org/10.22342/jme.v13i1.pp119-134

Rosli, R., & Siregar, N. C. (2022). Teacher professional development on science, technology, engineering, and mathematics: A bibliometric analysis. Contemporary Educational Research Journal, 12(1), 01–17. https://doi.org/10.18844/cerj.v12i1.5417

Rosli, R., Abdullah, M., Siregar, N. C., Abdul Hamid, N. S., Abdullah, S., Beng, G. K., Halim, L., Mat Daud, N., Bahari, S. A., Abd Majid, R., & Bais, B. (2020). Student awareness of space science: Rasch model analysis for validity and reliability. World Journal of Education, 10(3), 170-177.

Rosli, R., Abdullah, M., Siregar, N. C., Hamid, N. S. A., Abdullah, S., Beng, G. K., ... & Bais, B. (2019, July). Exploring space science through the UKM-SIDπ Outreach Program. In 2019 6th International Conference on Space Science and Communication (IconSpace) (pp. 253-256). IEEE. https://doi.org/10.1109/IconSpace.2019.8905957

Siregar, N. C. (2020). Interest STEM based on family background for secondary school students: Validity and reliability instrument using Rasch model analysis. Proceeding in RSU International Research Conference, May 1, 2020. Pathum Thani, Thailand. https://doi.org/10.14458/RSU.res.2020.131

Siregar, N. C., & Anggrayni, D. (2023). STEM-based facilitator in weather observation to determine prayer time. Aksioma, 12(1), 10-17.

Siregar, N. C., & Anggrayni, D. (2023). STEM-based social interaction model in building communication residents of social institutions in Bogor region. Aksioma, 12(1), 37-45.

Siregar, N. C., & Nasiah, S. (2022). Mathematics teachers’ professional development: A bibliometric analysis. Aksioma, 11(2), 172-180.

Siregar, N. C., & Rosli, R. (2021). The effect of STEM interest is based on family background for secondary students. Journal of Physics: Conference Series, 1806 (1), 012217.

Siregar, N. C., Rosli, R., & Nite, S. (2023). Students' interest in Science, Technology, Engineering, and Mathematics (STEM) is based on parental education and gender factors. International Electronic Journal of Mathematics Education, 18(2), em0736.

Siregar, N. C., Rosli, R., Maat, S. M., & Capraro, M. M. (2019). The effect of science, technology, engineering, and mathematics (STEM) program on students’ achievement in mathematics: A meta-analysis. International Electronic Journal of Mathematics Education, 15(1), 1- 12. https://doi.org/10.29333/iejme/5885

STEM Education Coalition. (2021). Federal STEM education and workforce programs.

STEMconnector. (2020). The power of business-education partnerships: Lessons learned from P-TECH schools.

The Royal Society. (2020). Shaping the future: A strategy for collaboration on skills in science and technology.

The White House. (2020). Women in STEM: A gender gap to innovation.

UNESCO. (2018). Rethinking education: Towards a global common good? UNESCO Publishing.

UNESCO. (2020). Education in a post-COVID world: Nine ideas for public action.

United Nations Educational, Scientific and Cultural Organization (UNESCO). (2020). Education for sustainable development goals: Learning objectives.

Venn, S., & Ismail, N. (2020). Increasing student engagement in science, technology, engineering, and mathematics (STEM): A literature review. Journal of Science Education and Technology, 29(3), 396-408.

Wang, M. T., & Degol, J. L. (2017). The gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119-140.

World Economic Forum. (2020). The Future of jobs report 2020.

Downloads

Published

2023-10-30

How to Cite

Warsito, Siregar, N. C., Gumilar, A., & Rosli, R. (2023). STEM for the 21st Century: Building a Stronger Workforce for the Digital Age. Mosharafa: Jurnal Pendidikan Matematika, 12(4), 879–894. https://doi.org/10.31980/mosharafa.v12i4.1199

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.