Exploring Gender Differences in Spatial Reasoning: Analyzing Hyperbolic Problem-Solving Skills Among University Students
DOI:
https://doi.org/10.31980/mosharafa.v15i1.3464Keywords:
Spatial Reasoning, cognitive style, problem solving, field-dependent, field independent, Gender, Hiperbola, Mahasiswa, Orientasi Spasial, Penalaran SpasialAbstract
Penelitian mengenai perbedaan penalaran spasial berdasarkan gender di tingkat universitas masih memerlukan konfirmasi lebih lanjut. Penelitian ini bertujuan mendeskripsikan perbedaan langkah-langkah penyelesaian soal hiperbola antara mahasiswa laki-laki dan perempuan. Menggunakan metode kualitatif, penelitian ini melibatkan 30 mahasiswa yang dipilih melalui rumus Slovin dari total populasi 480 mahasiswa. Instrumen penelitian meliputi tes soal hiperbola dan pedoman wawancara. Hasil penelitian menunjukkan adanya perbedaan signifikan pada aspek orientasi spasial, di mana mahasiswa perempuan menunjukkan keunggulan dalam langkah-langkah penyelesaian karena pemahaman konsep jarak yang lebih baik. Temuan ini menyimpulkan bahwa terdapat karakteristik unik pada penalaran spasial perempuan di tingkat pendidikan tinggi yang berbeda dari temuan umum di tingkat sekolah. Hasil penelitian ini memberikan kontribusi teoretis bagi pengembangan literatur penalaran spasial dalam pendidikan matematika.
Research on gender-based differences in spatial reasoning at the university level requires further empirical confirmation. This study aims to describe the differences in procedural steps for solving hyperbola problems between male and female students. Employing a qualitative method, the study involved 30 students selected via Slovin’s formula from a population of 480. Research instruments consisted of hyperbola problem-solving tasks supported by interview transcripts. The findings reveal distinct differences in spatial orientation, where female students demonstrated superior performance in solving steps due to a robust understanding of distance concepts. In conclusion, these results highlight unique spatial reasoning characteristics among female students in higher education, diverging from common findings at the school level. This research contributes to the theoretical development of spatial reasoning literature within mathematics education.
References
Anupan, A., & Chimmalee, B. (2022). A concept attainment model using cloud-based mobile learning to enhance the mathematical conceptual knowledge of undergraduate students. International Journal of Information and Education Technology, 12(2), 171–178. https://doi.org/10.18178/ijiet.2022.12.2.1601
Attali, Y. (2015). Effects of multiple-try feedback and question type during mathematics problem solving on performance in similar problems. Computers and Education, 86, 260–267. https://doi.org/10.1016/j.compedu.2015.08.011
Attali, Y., & van der Kleij, F. (2017). Effects of feedback elaboration and feedback timing during computer-based practice in mathematics problem solving. Computers and Education, 110, 154–169. https://doi.org/10.1016/j.compedu.2017.03.012
Bem, S. L. (1981). Gender schema theory: A cognitive account of sex typing. Psychological Review, 88(4), 354–364. https://doi.org/10.1037/0033-295X.88.4.354
Bishara, S. (2016). Creativity in unique problem-solving in mathematics and its influence on motivation for learning. Cogent Education, 3(1), 1–14. https://doi.org/10.1080/2331186X.2016.1202604
Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., Francis, K., Hawes, Z., Moss, J., Mulligan, J., Okamoto, Y., Whiteley, W., & Woolcott, G. (2017). Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, 95(2), 143–161. https://doi.org/10.1007/s10649-016-9743-2
Buhaerahiain, B., & Nasir, M. (2022). Gender Specific Study of Students’ Spatial Inference in Solving Geometry Problem. Jurnal Ilmiah Pendidikan Matematika Al Qalasadi, 6(2), 100–110. https://doi.org/10.32505/qalasadi.v6i2.4723
Buljan, I. (2023). A guide to responsible research. In Annual Global Emergency Care Portfolio. https://link.springer.com
Clement, J. J. (2008). Creative model construction in scientists and students. Springer.
Dolores, M., & Tongco, C. (2007). Definition of Purposive Sampling. A Journal of Plants, People and Applied Research, 5, 1–12.
Fowler, S., Cutting, C., Kennedy, J. P., Leonard, S. N., Gabriel, F., & Jaeschke, W. (2022). Technology enhanced learning environments and the potential for enhancing spatial reasoning: a mixed methods study. Mathematics Education Research Journal, 34(4), 887–910. https://doi.org/10.1007/s13394-021-00368-9
Fujita, T., Kondo, Y., Kumakura, H., Kunimune, S., & Jones, K. (2020). Spatial reasoning skills about 2D representations of 3D geometrical shapes in grades 4 to 9. Mathematics Education Research Journal, 32(2), 235–255. https://doi.org/10.1007/s13394-020-00335-w
Gözde, A. (2020). Non-routine problem solving performances of mathematics teacher candidates. Educational Research and Reviews, 15(5), 214–224. https://doi.org/10.5897/err2020.3907
Hardman, D., & Macchi, L. (2005). Thinking: Psychological Perspectives on Reasoning, Judgment and Decision Making. In Thinking: Psychological Perspectives on Reasoning, Judgment and Decision Making. https://doi.org/10.1002/047001332X
Harris, D., Lowrie, T., Logan, T., & Hegarty, M. (2021). Spatial reasoning, mathematics, and gender: Do spatial constructs differ in their contribution to performance? British Journal of Educational Psychology, 91(1), 409–441. https://doi.org/10.1111/bjep.12371
Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
Ianì, F., Schaeken, W., Ras, I. N., & Bucciarelli, M. (2023). Motor imagery and engagement favour spatial reasoning. Memory and Cognition, 51(5), 1103–1114. https://doi.org/10.3758/s13421-022-01383-2
Kablan, Z., & Günen, A. (2021). The Relationship between Students’ Reflective Thinking Skills and Levels of Solving Routine and Non-routine Science Problems. Science Education International, 32(1), 55–62. https://doi.org/10.33828/sei.v32.i1.6
Kurnaz, A., Yurt, E., & Koçlar, N. (2023). The Relationship between Gifted Students’ Spatial Ability and Problem Solving: The Mediating Role of Mathematical Reasoning. Milli Egitim, 52(239), 2241–2260. https://doi.org/10.37669/milliegitim.1123580
Kurt, G., Önel, F., & Çakıoğlu, Ö. (2023). An investigation of Middle School Students’ Spatial Reasoning Skills. International Electronic Journal of Elementary Education, 16(1), 123–141. https://doi.org/10.26822/iejee.2023.319
Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem-solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6), 1–19. https://doi.org/10.1371/journal.pone.0130570
Latifah, N., & Budiarto, M. (2019). Student’s Spatial Reasoning Profile in Solving Geometry Problems Judging from the Level of Mathematical Ability. Mathedunesa, 8(3), 589–594.
Losioki, B. E., & Mdee, H. K. (2023). The contribution of the hidden curriculum to gender inequality in teaching and learning materials: Experiences from Tanzania. Asian Journal of Education and Training, 9(2), 54–58. https://doi.org/10.20448/edu.v9i2.4706
Lowrie, T., & Jorgensen, R. (2018). Equity and spatial reasoning: reducing the mathematical achievement gap in gender and social disadvantage. Mathematics Education Research Journal, 30(1), 65–75. https://doi.org/10.1007/s13394-017-0213-7
Lutfitasari, A., Amin, S. M., & Masriyah, M. (2018). Students Spatial Reasoning in Solving Geometrical Problems Based on Personality Types. 157(Miseic), 171–175. https://doi.org/10.2991/miseic-18.2018.42
Martin, M. O., Davier, M. Von, & Mullis, I. V. S. (2023). TIMSS 2023 Assessment Frameworks TIMSS 2023 Assessment Frameworks.
Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and mathematics performance in geometry, word, and non-word problem-solving. Learning and Individual Differences, 54, 20–29. https://doi.org/10.1016/j.lindif.2017.01.005
OECD. (2018). PISA 2021 Mathematics Framework (Draft). Angewandte Chemie International Edition, 6(11), 951–952., 5–24. http://www.oecd.org/pisa/pisaproducts/pisa-2021-mathematics-framework-draft.pdf
OECD. (2021). Pisa 2021. Oecd, 95. https://www.oecd.org/pisa/sitedocument/PISA-2021-mathematics-framework.pdf
Özreçberoğlu, N., & Çağanağa, Ç. K. (2018). Making it count: Strategies for improving problem-solving skills in mathematics for students and teachers’ classroom management. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1253–1261. https://doi.org/10.29333/ejmste/82536
Panaoura, A. (2012). Improving problem solving ability in mathematics by using a mathematical model: A computerized approach. Computers in Human Behavior, 28(6), 2291–2297. https://doi.org/10.1016/j.chb.2012.06.036
Rangkuti, R. K., Khabibah, S., & Ekawati, R. (2024). Spatial reasoning of mathematics education students: an analysis of differences in solving hyperbola problems based on level of geometry ability. Perspektivy Nauki i Obrazovania, 72(6), 248–260. https://doi.org/10.32744/pse.2024.6.16
Rangkuti, R. K., & Juniati, D. (2022). Profile of MTs Students’ Spatial Reasoning in Solving Contextual Problems Based on Mathematical Ability. International Journal Of Humanities Education and Social Sciences (IJHESS), 1(6), 921–928. https://doi.org/10.55227/ijhess.v1i6.178
Schoenfeld, A. H. (2016). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics (Reprint). Journal of Education, 196(2), 1–38. https://doi.org/10.1177/002205741619600202
Sebastian, M., Banate, R., & Saquin, M. (2022). Gender Roles Among Public Elementary Teachers: Basis for Gender-Responsive Intervention Activities. International Online Journal of Primary Education, 11(2), 401–411. https://doi.org/10.55020/iojpe.1222199
Septia, T., Prahmana, R. C. I., Pebrianto, & Wahyu, R. (2018). Improving students spatial reasoning with course lab. Journal on Mathematics Education, 9(2), 327–336. https://doi.org/10.22342/jme.9.2.3462.327-336
Sutherland, S. (2022). Gender Equity in The Curriculum (pp. 1–23). University of South Carolina.
Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills. Sustainability (Switzerland), 12(23), 1–28. https://doi.org/10.3390/su122310113
Tartre, L. A. (2020). Spatial Orientation Skill and Mathematical Problem Solving. Journal for Research in Mathematics Education, 21(3), 216–229. https://doi.org/10.5951/jresematheduc.21.3.0216
Tejada, J. J., Raymond, J., & Punzalan, B. (2012). On the Misuse of Slovin’s Formula. The Philippine Statistician, 61.
Tokarz, R., Bucy, R., Medaille, A., & Beisler, M. (2022). The Role of Self-Efficacy in the Thesis-Writing Experiences of Undergraduate Honors Students. Teaching and Learning Inquiry, 10. https://doi.org/10.20343/teachlearninqu.10.2
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599
Wenzel, T. J. (1997). What Is Undergraduate Research? Council on Undergraduate Research Quarterly, 17(4), 163.
Wolfram, M., & Kienesberger, M. (2023). Gender in sustainability transition studies: Concepts, blind spots, and future orientations. Environmental Innovation and Societal Transitions, 46, 100686. https://doi.org/10.1016/j.eist.2022.100686
Yazgan, Y., & Sahin, H. B. (2018). Relationship between brain hemisphericity and non-routine problem-solving skills of prospective teachers. Universal Journal of Educational Research, 6(9), 2001–2007. https://doi.org/10.13189/ujer.2018.060919
Zhang, Yan & Wildemuth, M. (2005). Unstructured Interviewing. Journal. https://doi.org/10.4135/9781412982740.n2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mosharafa: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.