Konsep Operasi Bilangan Pecahan Melalui Garis Bilangan
DOI:
https://doi.org/10.31980/mosharafa.v7i3.513Keywords:
bilangan pecahan, konsep, pemahaman, fractions, concepts, understandingAbstract
Dalam pembelajaran operasi bilangan pecahan masalah yang sering timbul yaitu kesulitan siswa dalam menyelesaikan operasi penjumlahan, pengurangan, perkalian dan pembagian. Tujuan dari penulisan makalah ini adalah; (1) memahami konsep pecahan menggunakan garis bilangan untuk, (2) memahami konsep operasi pecahan (penjumlahan pengurangan, perkalian dan pembagian menggunakan garis bilangan. Bilangan pecahan adalah bilangan yang berbentuk, untuk a, b merupakan bilangan bulat dan b ≠0. Metode yang digunakan adalah menyajikan bilangan pecahan dalan garis bilangan. Dengan pendekatan garis bilangan diharapkan dapat membantu para guru dalam merancang proses belajar mengajar pada materi pecahan.
In learning to operate fractions, the problem that often arises is the difficulty of students in completing the addition, subtraction, multiplication, and division operations. The purpose of writing this paper is; (1) understand the concept of fractions using number lines, (2) to understand the concept of fraction operations (sum of subtraction, multiplication, and division using number lines. Fraction numbers are shaped numbers, for a, b is an integer, and b ≠ 0. is used to present fractions in the number line, with the number line approach expected to help teachers in designing the teaching and learning process in fraction material.References
Afriansyah, E. A. (2017). Desain Lintasan Pembelajaran Pecahan melalui Pendekatan Realistic Mathematics Education. Mosharafa: Jurnal
Pendidikan Matematika 6 (3), 464-474.
Burns, M. (2010). Teaching arithmetic: Lessons for introducing fractions, grades 4–5. Sausalito, CA: Math Solutions Publications.
Behr, M., Wachsmuth, I., & Post, T. (2015). Construct a sum: A measure of children’s understanding of fraction size. Journal for Research in
Mathematics Education, 16 (2), 120–131.
Carpenter, T., Fennema, E., & Romberg, T. (2013). Rational numbers: An integration of research (pp. 1–11). Hillsdale, NJ: Lawrence Erlbaum.
Clarke, D. M., Roche, A., & Mitchell, A. (2008). Ten practical, research-based tips for making fractions come alive (and make sense) in the middle years. Mathematics Teaching in the Middle School, 13(7), 373–380.
Keddy, M. L. (2013). Essential Mathematics. Fifth ed. Addition Westley Publishing Inc.
Lamon, S. (2012). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies.New York, NY: Taylor & Francis Group.
McNamara, J., & Shaughnessy, M. M. (2010). Beyond pizzas and pies: 10 essential strategies for supporting fraction sense (grades 3–5). Sausalito, CA: Math Solutions Publications.
Nelson, A. B. B. & Nelson, T. (2014). Mathematics for Elementary Teachers. New York: Mc. Graw Hill
Company.
Stewart, J. B., Redlin, L., & Watson, S. (2008). College Algebra. Brooks Cole.
Suwarto. (2018). Analisis Kesulitan Belajar Operasi Hitung Pada Siswa Kelas Satu Sekolah Dasar. Mosharafa: Jurnal
Pendidikan Matematika, 7 (2), 285-294.
Thomas, C. (2010). Fraction competency and algebra success. [Online]. Retrieved from http://etd.lsu.edu/docs/available/etd-
/unrestricted/corettathesisaug24.pdf
Wong, M. & Evans, D. (2008). Fractions as a measure. In M. Goos, R. Brown, & K. Makar (Eds.). Proceedings of the 31st
Annual Conference of the Mathematics Education Research Group of Australasia, Adelaide, 28 June-1 July 2008. MERGA.
Yulianingsih, A., Febrian, Dwinata, A. (2018). Analisis Kesalhan konsep pecahan pada siswa kelas VII A SMP Negeri 13 Satu Atap Tanjungpinang. Mosharafa: Jurnal Pendidikan Matematika, 7 (2), 199-206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Mosharafa: Jurnal Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.