Determinan pencapaian siswa bidang matematika: Perbandingan antara indonesia dan singapura

Authors

  • M. Mujiya Ulkhaq Universitas Diponegoro

DOI:

https://doi.org/10.31980/pme.v2i1.1395

Keywords:

mathematics, PISA, multivariate regression, Indonesia;, Singapore, matematika, regresi multivariat, Indonesia, Singapura

Abstract

This study investigates and compares the determinants of Indonesian and Singaporean students’ achievement in mathematics. The achievement is proxied by the PISA score of mathematics. The recent PISA 2018 data is used to answer this research question. Multivariate linear regression is used; as the dependent variable in the PISA score of mathematics, while the information concerning the student’s background is used as independent variables, student’s age, gender, learning time in mathematics, index of economic, social, and cultural status, and ICT possession at home. For all samples (Indonesia and Singapore), all independent variables are statistically significant at least at the 10% level. This shows that age, gender, learning time in mathematics, index of economic, social, and cultural status, and ICT possession at home do influence student achievement as measured by PISA mathematics scores. Several tests to test the classical assumptions, such as the residual normality test, heteroscedasticity test, and collinearity test were also carried out. According to this test, no problems occurred.

Penelitian ini menyelidiki faktor-faktor penentu (determinan) pencapaian matematika siswa Indonesia dan Singapura. Pencapaian siswa diukur dengan dengan skor PISA matematika. Data PISA terbaru tahun 2018 digunakan untuk menjawab pertanyaan penelitian ini. Regresi linier multivariat digunakan; sebagai variabel terikat adalah nilai PISA matematika, sedangkan informasi mengenai latar belakang siswa digunakan sebagai variabel bebas, yaitu usia, jenis kelamin, waktu belajar matematika, indeks status ekonomi, sosial, dan budaya, serta kepemilikan ICT di rumah. Untuk semua sampel (Indonesia dan Singapura), semua variabel bebas signifikan secara statistik dalam taraf (paling tidak) 10%. Hal ini menunjukkan bahwa usia, jenis kelamin, kepemilikan ICT di rumah, kondisi ekonomi, sosial, dan budaya, dan waktu belajar matematika waktu belajar matematika, indeks status ekonomi, sosial, dan budaya, serta kepemilikan ICT di rumah berpengaruh terhadap prestasi siswa yang diukur dengan nilai PISA matematika. Beberapa pengujian untuk menguji asumsi klasik, seperti uji normalitas residual, uji heteroskedastisitas dan uji kolinearitas juga dilakukan. Menurut tes ini, tidak ada masalah yang terjadi.

References

Acosta, S. T., & Hsu, H. Y. (2014). Negotiating diversity: An empirical investigation into family, school and student factors influencing New Zealand adolescents’ science literacy. Educational Studies, 40(1), 98-115.

Afriansyah, E. A., & Turmudi, T. (2022). Prospective teachers’ thinking through realistic mathematics education based emergent modeling in fractions. Jurnal Elemen, 8(2), 605-618.

Barnard-Brak, L., Lan, W. Y., & Yang, Z. (2018). Differences in mathematics achievement according to opportunity to learn: A 4pL item response theory examination. Studies in Educational Evaluation, 56, 1-7.

Gamazo, A., & Martínez-Abad, F. (2020). An exploration of factors linked to academic performance in PISA 2018 through data mining techniques. Frontiers in Psychology, 11, 3365.

Gamazo, A., Olmos-Migueláñez, S., & Martínez-Abad, F. (2016, November). Multilevel models for the assessment of school effectiveness using PISA scores. In Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 1161-1166).

Mancebón, M. J., Calero, J., Choi, Á., & Ximénez-de-Embún, D. P. (2012). The efficiency of public and publicly subsidized high schools in Spain: Evidence from PISA-2006. Journal of the operational research Society, 63(11), 1516-1533.

Martínez-Abad, F. (2019). Identification of factors associated with school effectiveness with data mining techniques: testing a new approach. Frontiers in Psychology, 2583.

Perelman, S., & Santín, D. (2011). Measuring educational efficiency at student level with parametric stochastic distance functions: an application to Spanish PISA results. Education economics, 19(1), 29-49.

Puspasari, R., Rinawati, A., & Pujisaputra, A. (2021). Pengungkapan Aspek Matematis pada Aktivitas Etnomatematika Produksi Ecoprint di Butik El Hijaaz. Mosharafa: Jurnal Pendidikan Matematika, 10(3), 379-390.

Salas‐Velasco, M. (2020). Assessing the performance of Spanish secondary education institutions: distinguishing between transient and persistent inefficiency, separated from heterogeneity. The Manchester School, 88(4), 531-555.

Salma, F. A., & Sumartini, T. S. (2022). Kemampuan Representasi Matematis Siswa antara yang Mendapatkan Pembelajaran Contextual Teaching and Learning dan Discovery Learning. Plusminus: Jurnal Pendidikan Matematika, 2(2), 265-274.

Sanidah, S., & Sumartini, T. S. (2022). Kesulitan siswa kelas viii dalam menyelesaikan soal cerita spldv dengan menggunakan langkah polya di desa cihikeu. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 1(1), 15-26.

She, H. C., Lin, H. S., & Huang, L. Y. (2019). Reflections on and implications of the Programme for International Student Assessment 2015 (PISA 2015) performance of students in Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal of Research in Science Teaching, 56(10), 1309-1340.

Siregar, I., & Sari, V. T. A. (2020). Strategi Motivasi Green’s, Gaya Baru Pembelajaran Matematika pada Siswa Kemampuan Rendah di Indonesia. Mosharafa: Jurnal Pendidikan Matematika, 9(3), 383-394.

Smith, P., Cheema, J., Kumi-Yeboah, A., Warrican, S. J., & Alleyne, M. L. (2018). Language-based differences in the literacy performance of bidialectal youth. Teachers College Record, 120(1), 1-36.

Ulkhaq, M. M. (2021). Efficiency analysis of Indonesian schools: A stochastic frontier analysis using OECD PISA 2018 data. In 2nd International Conference on Industrial Engineering and Operations Management Asia Pacific Conference, Surakarta, Indonesia.

Ulkhaq, M. M. (2022). The determinants of Indonesian students’ science performance: An analysis through PISA data 2015 wave. In Bioteknologi dan Penerapannya dalam Penelitian dan Pembelajaran Sains, Moh. Nasrudin (Ed.), Pekalongan: PT. Nasya Expanding Management, 529-539.

Utami, H. S., & Puspitasari, N. (2022). Kemampuan pemecahan masalah siswa smp dalam menyelesaikan soal cerita pada materi persamaan kuadrat. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 1(1), 57-68.

Willms, J. D. (2010). School composition and contextual effects on student outcomes. Teachers College Record, 112(4), 1008-1037.

Wiseman, A. W. (2013). Policy responses to PISA in comparative perspective. PISA, power, and policy: The emergence of global educational governance, 303-322.

Zhu, Y., & Kaiser, G. (2020). Do east asian migrant students perform equally well in mathematics? International Journal of Science and Mathematics Education, 18(6), 1127-1147.

Downloads

Published

2023-02-28

How to Cite

Ulkhaq, M. M. (2023). Determinan pencapaian siswa bidang matematika: Perbandingan antara indonesia dan singapura. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 2(1), 9–16. https://doi.org/10.31980/pme.v2i1.1395

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.