Didactical Design with Motion Graphics for Enhancing Conceptual Understanding of Geometric Translation

Authors

  • Cita Dwi Rosita Universitas Swadaya Gunung Jati
  • Muchamad Subali Noto Universitas Swadaya Gunung Jati https://orcid.org/0000-0001-9607-4394
  • Lilis Marina Anggraini Universitas Islam Riau
  • Ikman Nurhakim Rahadi Universitas Swadaya Gunung Jati

DOI:

https://doi.org/10.31980/mosharafa.v14i4.3544

Keywords:

Didactical Design Research, translasi geometri, motion graphic, hambatan belajar, pemahaman konseptual, Geometric Translation, Motion Graphics, Learning Obstacles, Conceptual Understanding

Abstract

Pembelajaran transformasi di sekolah menengah menghadapi rendahnya pemahaman konseptual siswa. Desain didaktis berbasis visual dinamis belum terintegrasi sistematis dengan analisis hambatan belajar. Penelitian ini bertujuan menganalisis penguatan pemahaman konseptual translasi melalui desain didaktis berbantuan motion graphic. Penelitian ini menggunakan pendekatan kualitatif dengan tiga fase DDR, yaitu analisis didaktis dan pedagogis, analisis metapedadidaktik, serta analisis retrospektif. Subjek penelitian terdiri dari 10 siswa yang dipilih secara purposif untuk memungkinkan pengamatan mendalam terhadap proses belajar, respons didaktis, dan regulasi hambatan belajar. Data dikumpulkan melalui observasi, wawancara, dan tugas tertulis. Hasil menunjukkan seluruh siswa memahami translasi sebagai pergeseran. Sebanyak 30% siswa mengalami hambatan epistemologis pada interpretasi vektor translasi negatif. Umpan balik visual motion graphic memungkinkan koreksi mandiri selama pembelajaran. Hambatan belajar bergeser dari epistemologis menuju didaktis pada aspek komunikasi matematis formal. Desain didaktis berbantuan motion graphic efektif meregulasi hambatan belajar translasi. Penelitian lanjutan perlu memperluas pada transformasi geometri lain.

Learning transformations in secondary schools faces persistently low students’ conceptual understanding. Didactical designs based on dynamic visualization have not been systematically integrated with learning obstacle analysis. This study aims to analyze the strengthening of students’ conceptual understanding of translation through motion graphic–assisted didactical design. This study employed a qualitative approach with three phases of Didactical Design Research (DDR), namely didactical and pedagogical analysis, metapedadidactical analysis, and retrospective analysis. The participants consisted of ten purposively selected students to allow in-depth observation of learning processes, didactical responses, and the regulation of learning obstacles. Data were collected through observations, interviews, and written tasks. Retrospective analysis compared actual student responses with predicted didactical responses. Source triangulation ensured the credibility of research findings. Results show that all students understood translation as a rigid displacement. Thirty percent experienced epistemological obstacles in interpreting negative translation vectors. Visual feedback provided by motion graphics enabled self-correction during learning. Learning obstacles shifted from epistemological to didactical, particularly in formal mathematical communication. Motion graphic–assisted didactical design effectively regulates learning obstacles in translation. Future studies should extend to other geometric transformations.

References

Afriansyah, E. A. (2022). Peran RME terhadap Miskonsepsi Siswa MTs pada Materi Bangun Datar Segi Empat. Mosharafa: Jurnal Pendidikan Matematika, 11(3), 359–368. https://doi.org/10.31980/mosharafa.v11i3.727

Aini, N., & Suryowati, E. (2022). Mengeksplor Penalaran Spasial Siswa dalam Menyelesaikan Soal Geometri Berdasarkan Gender. Mosharafa: Jurnal Pendidikan Matematika, 11(1), 61–72. https://doi.org/10.31980/mosharafa.v11i1.687

Artigue, M. (2012). Digital technologies: A window on theoretical issues in mathematics education. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 463–488). Routledge.

Booth, J. L., Barbieri, C., Eyer, F., & Paré-Blagoev, E. J. (2020). Persistent misconceptions in algebraic problem solving. Journal for Research in Mathematics Education, 51(2), 140–163. https://doi.org/10.5951/jresematheduc.51.2.0140

Booth, J. L., McGinn, K. M., Barbieri, C., Begolli, K. N., Chang, B., Miller-Cotto, D., ... Davenport, J. L. (2020). Evidence for persistent and pernicious misconceptions in algebra and geometry. Journal for Research in Mathematics Education, 51(1), 5–38. https://doi.org/10.5951/jresematheduc.51.1.0005

Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer Academic Publishers.

Firdausi, I., & Suparni. (2022). Game Edukasi Android Deck Card untuk Memfasilitasi Pemahaman Konsep Siswa Materi Pecahan. Mosharafa: Jurnal Pendidikan Matematika, 11(3), 447–458. https://doi.org/10.31980/mosharafa.v11i3.736

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). Routledge.

Gravemeijer, K., & van Eerde, D. (2009). Design research as a means for building a knowledge base for teachers and teaching in mathematics education. The Elementary School Journal, 109(5), 510–524. https://doi.org/10.1086/596999

Hegarty, M. (2019). Components of spatial intelligence. In D. H. Uttal & L. S. Cohen (Eds.), The psychology of learning and motivation (Vol. 70, pp. 1–44). Academic Press. https://doi.org/10.1016/bs.plm.2019.02.001

Hoffmeester, H., Ratumanan, T. G., & Laaamena, C. M. (2025). Enhancing Computational Thinking through STEM Learning: The Cultural Context of Perahu Arumbae in Teaching the Pythagorean. Plusminus: Jurnal Pendidikan Matematika, 5(3), 431–450. https://doi.org/10.31980/plusminus.v5i3.3426

Hsu, S. K., & Hsu, Y. (2025). Supporting young learners in learning geometric area concepts through static versus dynamic representation and imagination strategies. International Journal of Science and Mathematics Education, 23(2), 441-459.

Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2021). Digital technologies in mathematics education: From tool to environment. ZDM–Mathematics Education, 53(5), 845–857. https://doi.org/10.1007/s11858-021-01241-1

Marianti, M. S. (2023). Mathematical problem-solving ability of junior high school students on flat-sided geometric shapes. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 2(3), 309–320. https://doi.org/10.31980/pme.v2i3.1767

Mayer, R. E. (2020). Multimedia learning and educational psychology. Educational Psychology Review, 32(2), 463–483. https://doi.org/10.1007/s10648-020-09520-2

Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., & Fishbein, B. (2023). TIMSS 2023 assessment frameworks. TIMSS & PIRLS International Study Center. https://timss.bc.edu/timss2023/frameworks

Nizar, H., Zulkardi, Z., Putri, R. I. I., Mulyono, B., & Susanti, E. (2025). Learning Translation Using Gobak Sodor Game. Mosharafa: Jurnal Pendidikan Matematika, 14(1), 279–290. https://doi.org/10.31980/mosharafa.v14i1.2607

Noto, M. S., Rosita, C. D., & Rahadi, I. N. (2025). Fostering Conceptual Understanding of Dilation in Geometry through Motion Graphics : A Didactical Design Research Approach. Mosharafa: Jurnal Pendidikan Matematika, 14(2), 341–354.

Octaria, D., Zulkardi, Z., Putri, R. I. I., & Cecil Hiltrimartin. (2025). Ethnomathematical Insights from the Geometric Architecture of the Sultan Mahmud Badaruddin II Museum. Mosharafa: Jurnal Pendidikan Matematika, 14(1), 1–22. https://doi.org/10.31980/mosharafa.v14i1.3008

OECD. (2023). PISA 2022 results (Volume I): Student performance in mathematics, reading and science. OECD Publishing. https://doi.org/10.1787/53f23881-en

Prediger, S., Gravemeijer, K., & Confrey, J. (2020). Design research with a focus on learning processes: An overview on achievements and challenges. ZDM–Mathematics Education, 52(6), 877–891. https://doi.org/10.1007/s11858-020-01175-7

Rahadi, I. N., Aminah, N., Noto, M. S., & Rosita, C. D. (2024). Analysis of Learning Obstacles in the Topic of Geometric Transformations. IndoMath: Indonesia Mathematics Education, 7(1), 48-57.

Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2021). Recent research on geometry education: An overview. Educational Studies in Mathematics, 108(3), 409–440. https://doi.org/10.1007/s10649-021-10041-7

Suryadi, D. (2019). Didactical design research (DDR) dalam pengembangan pembelajaran matematika. Bandung: UPI Press.

Trouche, L., Drijvers, P., Gueudet, G., & Sacristán, A. I. (2019). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. Springer.

UNESCO. (2022). Reimagining our futures together: A new social contract for education. UNESCO Publishing. https://unesdoc.unesco.org

Uttal, D. H., & Cohen, C. A. (2019). Spatial thinking and STEM education: When, why, and how? Educational Psychology Review, 31(1), 1–16. https://doi.org/10.1007/s10648-018-9452-0

Winsløw, C., Artigue, M., & Trouche, L. (2014). Introduction: Didactical design in mathematics education. ZDM–Mathematics Education, 46(3), 313–321. https://doi.org/10.1007/s11858-014-0574-4

Zengin, Y. (2022). The effect of dynamic geometry software on students’ conceptual understanding in geometry. International Journal of Mathematical Education in Science and Technology, 53(6), 1514–1531. https://doi.org/10.1080/0020739X.2020.1868590

Downloads

Published

2025-10-30

How to Cite

Rosita, C. D., Noto, M. S., Anggraini, L. M., & Rahadi, I. N. (2025). Didactical Design with Motion Graphics for Enhancing Conceptual Understanding of Geometric Translation. Mosharafa: Jurnal Pendidikan Matematika, 14(4), 935–948. https://doi.org/10.31980/mosharafa.v14i4.3544

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.