Students' Computational Thinking Ability in Calculating an Area Using The Limit of Riemann Sum Approach

Authors

  • Enjun Junaeti Universitas Pendidikan Indonesia
  • Tatang Herman Universitas Pendidikan Indonesia
  • Nanang Priatna Universitas Pendidikan Indonesia
  • Dadan Dasari Universitas Pendidikan Indonesia
  • Dadang Juandi Universitas Sriwijaya

DOI:

https://doi.org/10.31980/mosharafa.v12i2.778

Keywords:

Berpikir komputasional, Jumlah Riemann, Luas daerah, Problem solving, Area, Computational thinking, Riemann Sum

Abstract

Melatih kemampuan berpikir komputasional mahasiswa membuka peluang untuk lebih menguasi konsep, menganalisis permasalahan, dan membangun solusi dunia nyata. Tujuan penelitian adalah menganalisis kemampuan berpikir komputational mahasiswa Pendidikan Ilmu Komputer berupa kemampuan abstraksi, dekomposisi, berpikir algoritmik, dan generalisasi. Metode penelitian yaitu studi kasus dengan pendekatan kualitatif deskriptif. Pembelajaran dilakukan kepada 40 mahasiswa semester 1 (satu) secara kolaboratif dalam penyelesaian masalah luas daerah dengan pendekatan limit. Pada akhir pembelajaran mahasiswa diberikan soal tes kemampuan berpikir komputasional mahasiswa. Jawaban tes setiap mahasiswa dianalisis dari segi sisi fungsi mental yang muncul untuk mengetahui karakteristik akusisi kemampuan penyelesaian masalah. Pada penelitian yang telah dilakukan mahasiswa dikategorikan dalam kelompok novice, advanced beginner, competent, proficient, dan expert berdasarkan karakter penyelesaian masalahnya. Pada umumnya setiap mahasiswa telah memiliki kemampuan berpikir algoritmik. Sebagian besar mahasiswa (kecuali kategori novice) juga telah mampu mengabstraksi dan mendekomposisi permasalahan. Sedangkan kemampuan pengenalan pola baru terlihat pada mahasiswa dengan kategori competent, proficient, dan expert.

Training students' computational thinking ability provides opportunities to comprehend concepts, analyse problems, and build solutions in real-life contexts. The purpose of the study was to analyse the computational thinking abilities of Computer Science Education students, i.e., abstraction, decomposition, algorithmic thinking, and generalization abilities. The research method used was a case study with a descriptive qualitative approach. The learning process was conducted by 40 students for semester 1 (one) semester collaboratively in solving area problems using the limit approach. At the end of the lesson, the students were tested through students' computational thinking abilities. Each student's answers were analyzed in terms of the mental functions that emerged to determine the characteristics of the acquisition of problem-solving ability. In this study, the students were categorized into groups of novices, advanced beginner, competent, professional, and expert based on the natures of their problem solving. In general, every student had the ability to think algorithmically. Most students (except the novice category) were able to abstract and unravel the problems. Meanwhile, the ability to recognize new patterns were demonstrated by the students in the competent, professional, and expert categories.

References

Afriansyah, E. A., & Turmudi, T. (2022). Prospective teachers’ thinking through realistic mathematics education based emergent modeling in fractions. Jurnal Elemen, 8(2), 605-618.

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Benakli, N., Kostadinov, B., Satyanarayana, A., & Singh, S. (2017). Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis. International Journal of Mathematical Education in Science and Technology, 48(3), 393–427.

https://doi.org/10.1080/0020739X.2016.1254296

Boom, K.-D., Bower, M., Arguel, A., Siemon, J., & Scholkmann, A. (2018). Relationship between Computational Thinking and a Measure of Intelligence as a General Problem-Solving Ability. Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, 206–211.

https://doi.org/10.1145/3197091.3197104

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking - a guide for teachers. Computing at School.

https://eprints.soton.ac.uk/424545/

Dreyfus, H. L., & Dreyfus, S. E. (2004). The Ethical Implications of the Five-Stage Skill-Acquisition Model. Bulletin of Science, Technology & Society, 24(3), 251–264. https://doi.org/10.1177/0270467604265023

Dreyfus, H. L., & Dreyfus, S. E. (2005). Peripheral Vision: Expertise in Real World Contexts. Organization Studies, 26(5), 779–792.

https://doi.org/10.1177/0170840605053102

Dreyfuss, S. E., & Dreyfus, H. L. (1980). A five-stage model of the mental activities involved in directed skill acquisition. In Operations Research Center (Issue February).

Eisenberg, M. (2002). Output Devices, Computation, and the Future of Mathematical Crafts. International Journal of Computers for Mathematical Learning, 7(1), 1–44.

https://doi.org/10.1023/A:1016095229377

Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. The International Journal of Information and Learning Technology, 34(2), 133–139.

https://doi.org/10.1108/IJILT-09-2016-0048

Gustiani, D. D., & Puspitasari, N. (2021). Kesalahan Siswa dalam Menyelesaikan Soal Matematika Materi Operasi Pecahan Kelas VII di Desa Karangsari. Plusminus: Jurnal Pendidikan Matematika, 1(3), 435-444.

Hadjerrouit, S., & Hansen, N.-K. (2022). Undergraduate Mathematics Students Engaging in Problem-Solving Through Computational Thinking and Programming: A Case Study BT - Orchestration of Learning Environments in the Digital World (D. Ifenthaler, P. Isaías, & D. G. Sampson (eds.); pp. 197–214). Springer International Publishing. https://doi.org/10.1007/978-3-030-90944-4_11

Honken, N. (2013). Dreyfus Five-Stage Model of Adult Skills Acquisition Applied to Engineering Lifelong Learning. ASEE Conferences. https://doi.org/10.18260/1-2--19457

Huang, M., Fan, R., Park, E., & Cheon, J. (2022). Exploring Instructional Strategies for Computational Thinking Concepts and Practices in Higher Education. In E. Langran (Ed.), Proceedings of Society for Information Technology & Teacher Education International Conference 2022 (pp. 27–32). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/p/220704

Israel-Fishelson, R., Hershkovitz, A., Eguíluz, A., Garaizar, P., & Guenaga, M. (2020). The Associations Between Computational Thinking and Creativity: The Role of Personal Characteristics. Journal of Educational Computing Research, 58(8), 1415–1447. https://doi.org/10.1177/0735633120940954

Lockwood, E., Asay, A., DeJarnette, A. F., & Thomas, M. (2016). Algorithmic thinking: An initial characterization of computational thinking in mathematics. 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 1588–1595.

Lu, C., Macdonald, R., Odell, B., Kokhan, V., Demmans Epp, C., & Cutumisu, M. (2022). A scoping review of computational thinking assessments in higher education. Journal of Computing in Higher Education, 34(2), 416–461. https://doi.org/10.1007/s12528-021 09305-y

Marques, M., Ochoa, S. F., Bastarrica, M. C., & Gutierrez, F. J. (2018). Enhancing the Student Learning Experience in Software Engineering Project Courses. IEEE Transactions on Education, 61(1), 63–73. https://doi.org/10.1109/TE.2017.2742989

Pei, C. (Yu), Weintrop, D., & Wilensky, U. (2018). Cultivating Computational Thinking Practices and Mathematical Habits of Mind in Lattice Land. Mathematical Thinking and Learning, 20(1), 75–89.

https://doi.org/10.1080/10986065.2018.1403543

Rahayu, N. S., Liddini, U. H., & Maarif, S. (2022). Berpikir Kreatif Matematis: Sebuah Pemetaan Literatur dengan Analisis Bibliometri Menggunakan Vos Viewer. Mosharafa: Jurnal Pendidikan Matematika, 11(2), 179-190.

Rambally, G. (2017). Integrating Computational Thinking in Discrete Structures BT - Emerging Research, Practice, and Policy on Computational Thinking (P. J. Rich & C. B. Hodges (eds.); pp. 99–119). Springer International Publishing.

https://doi.org/10.1007/978-3-319-52691-1_7

Rodríguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello-Martínez, R., & Villalba-Condori, K. O. (2021). Developing computational thinking with a module of solved problems. Computer Applications in Engineering Education, 29(3), 506–516. https://doi.org/https://doi.org/10.1002/cae.22214

Rousse, B. S., & Dreyfus, S. E. (2021). Revisiting the Six Stages of Skill Acquisition. Teaching and Learning for Adult Skill Acquisition: Applying the Dreyfus & Dreyfus Model in Different Fields, 1980, 3–30.

https://www.infoagepub.com/

Pipitgool, S., Pimdee, P., Tuntiwongwanich, S., & Narabin, A. (2021). Enhancing Student Computational Thinking Skills by use of a Flipped-Classroom Learning Model and Critical Thinking Problem-Solving Activities: A Conceptual Framework. Turkish Journal of Computer and Mathematics Education, 12(14), 1352–1363.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., Boucher Owens, D., Stephenson, C., & Verno, A. (2011). CSTA K – 12 Computer Science Standards.

Selby, C. C. (2015). Relationships: Computational Thinking, Pedagogy of Programming, and Bloom’s Taxonomy. Proceedings of the Workshop in Primary and Secondary Computing Education, 80–87. https://doi.org/10.1145/2818314.2818315

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. University of Southampton (E-prints). https://eprints.soton.ac.uk/356481/

Son, Y. S., & Lee, K. J. (2016). Computational thinking teaching model design for activating IT convergence education. The Journal of the Korea institute of electronic communication sciences, 11(5), 511–522.

https://doi.org/10.13067/JKIECS.2016.11.5.511

Sung, W., & Black, J. B. (2021). Factors to consider when designing effective learning: Infusing computational thinking in mathematics to support thinking-doing. Journal of Research on Technology in Education, 53(4), 404–426. https://doi.org/10.1080/15391523.2020.1784066

Verenikina, I. (2008). Scaffolding and learning: Its role in nurturing new learners. Https://Ro.Uow.Edu.Au/Edupapers/43, May.

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, June 23, 2015.

Wing, J. M. (2006). Computational Thinking. Commun. ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Downloads

Published

2023-04-30

How to Cite

Junaeti, E., Herman, T., Priatna, N., Dasari, D., & Juandi, D. (2023). Students’ Computational Thinking Ability in Calculating an Area Using The Limit of Riemann Sum Approach. Mosharafa: Jurnal Pendidikan Matematika, 12(2), 215–228. https://doi.org/10.31980/mosharafa.v12i2.778

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.