Letters in Algebra as The Transition from Arithmetic Thinking to Algebraic Thinking
DOI:
https://doi.org/10.31980/mosharafa.v12i3.818Keywords:
transisi, berpikir aritmetik, berpikir aljabar, huruf-huruf aljabar, kualitatif, transition, arithmetic thinking, algebraic thinking, algebraic letters, qualitativeAbstract
Huruf-huruf aljabar biasanya hanya dikenal sebagai variabel oleh siswa, padahal huruf-huruf aljabar ini memiliki ragam makna pada suatu permasalahan matematis. Pada penelitian ini bertujuan untuk menyelidiki interpretasi siswa terhadap makna dari huruf-huruf aljabar dalam menyelesaikan masalah matematis dengan perspektif siswa dalam masa transisi berpikir aritmetik ke berpikir aljabar. Penelitian yang digunakan pada penelitian kualitatif dengan jenis penelitian pada penelitian fenomenologi. Partisipan penelitian ini merupakan 18 siswa SMP yang diambil dari tiga sekolah yang terdapat di Riau. Teknik pengumpul data pada penelitian ini adalah dokumen lembar kerja siswa, wawancara yang direkam secara audio dan video dan catatan lapangan penelitian. Berdasarkan temuan penelitian pada siswa kelas VII tersebut, ditemukan bahwa siswa menginterpretasikan huruf-huruf aljabar hanya sebagai pengganti dari bilangan tertentu. Siswa menjadikan huruf-huruf aljabar sebatas pengganti bilangan asli dibandingkan sebagai bilangan yang diperumum. Huruf-huruf aljabar yang dikaitkan dengan ekspresi aljabar dan operasi aljabar serta persamaan aljabar memberikan kesulitan bagi siswa dalam menyelesaikan masalah tersebut. Hal ini disebabkan siswa belum mampu melihat bahwa huruf-huruf aljabar tersebut merupakan serangkaian konsep dasar aljabar generalized numbers bahkan pada konsep variabel.
Algebraic letters are usually only known as variables by students, even though these algebraic letters have a variety of meanings in a mathematical problem. This study aims to investigate students' interpretation of the meaning of algebraic letters in solving mathematical problems from the perspective of students in the transition period from arithmetic to algebraic thinking. The type of research used in qualitative research is phenomenological research. The participants of this study were 18 junior high school students taken from three schools in Riau. Data collection techniques in this study were student worksheet documents, audio- and video-recorded interviews, and research field notes. Based on the research findings on the seventh-grade students, it was found that students interpret algebraic letters only as a substitute for certain numbers. Students make algebraic letters as a substitute for natural numbers rather than as generalized numbers. Algebraic letters associated with algebraic expressions, algebraic operations, and algebraic equations deliver difficulties for students in solving these problems. This is because students have not been able to see that these algebraic letters are a series of basic concepts of generalized numbers in algebra, even on the concept of variables.
References
Afriansyah, E. A., & Turmudi, T. (2022). Prospective teachers’ thinking through realistic mathematics education based emergent modeling in fractions. Jurnal Elemen, 8(2), 605-618.
As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufiq, I. (2017). Matematika SMP/MTs Kelas VII Semester 1 (A. Lukito, A. Mahmudi, Turmudi, M. N. Priatna, Y. Satria, & Widowati (eds.); Edisi Revi). Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
Asquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle School Mathematics Teachers ’ Knowledge of Students ’ Understanding of Core Algebraic Concepts : Equal Sign and Variable. Mathematical Thinking and Learning, 9(2), 249–272. https://doi.org/ 10.1080/10986060701360910
Astutik, E. P., & Purwasih, S. M. (2023). Field Dependent Student Errors in Solving Linear Algebra Problems Based on Newman's Procedure. Mosharafa: Jurnal Pendidikan Matematika, 12(1), 169-180.
Brizuela, B. M., Blanton, M. L., Gardiner, A. M., Newman-Owens, A., & Sawrey, K. (2015). Children ’ s Use of Variables and Variable Notation to Represent Their Algebraic Ideas. Mathematical Thinking and Learning, 17(1), 34–63. https://doi.org/10.1080/10986065.2015.981939
Çelik, D., & Güneş, G. (2013). Different grade students’ use and interpretation of literal symbols. Kuram ve Uygulamada Egitim Bilimleri, 13(2), 1168–1175.
Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2018). Examining early algebraic thinking: insights from empirical data. Educational Studies in Mathematics, 98(1), 57–76. https://doi.org/10.1007/s10649-018-9803-x
Christou, K. P., & Vosniadou, S. (2012). What Kinds of Numbers Do Students Assign to Literal Symbols ? Aspects of the Transition from Arithmetic to Algebra. Mathematical Thinking and Learning, 14, 1–27. https://doi.org/10.1080/10986065.2012.625074
Christou, K. P., Vosniadou, S., & Vamvakoussi, X. (2007). Students’ Interpretations of Literal Symbols in Algebra. Re-Framing the Conceptual Change Approach in Learning and Instruction, January, 283–297.
Diva, S. A., & Purwaningrum, J. P. (2023). Strategi Mathematical Habits of Mind Berbantuan Wolfram Alpha untuk Meningkatkan Kemampuan Berpikir Kritis Siswa dalam Menyelesaikan Bangun Datar. Plusminus: jurnal pendidikan matematika, 3(1), 15-28.
Ferrucci, B. J. (2004). Gateways to Algebra at the Primary Level. The Mathematics Educator, 8(1), 131–138.
Fulop, Z. (2015). Transition from arithmetic to algebra in primary school education. Teaching Mathematics and Computer Science, 2, 225–248. https://doi.org/10.5485/TMCS.2015.0398
Hidayanto, E., Purwanto, Subanji, & Rahardjo, S. (2014). Transisi dari berpikir aritmetis ke berpikir aljabaris. July.
Jupri, A., Drijvers, P., & Heuvel-Panhuizen, M. van den. (2014). Difficulties in Initial Algebra Learning in Indonesia. Mathematics Education Research Journal, 26(4), 683–710. https://doi.org/10.1007/s13394-013-0097-0
Kaput, J. J. (2008). What Is Algebra? What is Algebraic Reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the Early Grades (pp. 8–17). Taylor&Francis Group, LLC.
Khalid, M., Yakop, F., & Ibrahim, H. (2020). Year 7 students’ interpretation of letters and symbols in solving routine algebraic problems. Qualitative Report, 25(11), 4167–4181. https://doi.org/10.46743/2160-3715/2020.4062
Kieran, C. (2004). Algebraic Thinking in The Early Grades : What is it? The Mathematics Educator, 8(1), 139–151.
Kilhamn, C. (2014). When Does a Variable Vary ? Identifying Mathematical Content Knowledge for Teaching Variables. Nordic Studies in Mathematics Education, 19(3–4), 83–100.
Kilhamn, C., Röj-Lindberg, A.-S., & Björkqvist, O. (2019). School Algebra. In C. Kilhamn & R. Saljo (Eds.), Encountering Algebra (pp. 1–12). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-030-17577-1
Küchemann, D. (1981). Algebra. In K. M. Hart (Ed.), Children’s Understanding Mathematics (pp. 102–119). John Murray.
Lisan, L. F., Risnawati, L., & Setyawan, B. W. (2023). Implementasi prinsip aritmatika sosial dalam transaksi jual beli pedagang di sekitar kampus uin sayyid ali rahmatullah tulungagung. Jurnal Inovasi Pembelajaran Matematika: PowerMathEdu, 2(2), 129-138.
Malisani, E., & Spagnolo, F. (2009). From Arithmetical Thought to Algebraic Thought : The Role of The“Variable". Educational Studies in Mathematics, 71, 19–41. https://doi.org/10.1007/s10649-008-9157-x
Mashazi, S. (2013). Learners’ Explanations of The Errors They Make in Introductory Algebra. Pythagoras, 9, 14–33.
Merriam, S. B., & Tisdell, E. J. (2016). Qualitative Research: A Guide to Design and Implementation (Fourth). Jossey-Bass.
Molina, M., Ambrose, R., & Rio, A. (2018). First Encounter with Variables by First and Third Grade Spanish Students. Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds: The Global Evolution of an Emerging Field of Research and Practice, 2017, 261–280.
NCTM. (2000). Principles and Standards for School Mathematics. The National Council of Teachers Mathematics.
Pitta-pantazi, D., Chimoni, M., & Christou, C. (2019). Different Types of Algebraic Thinking : an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education. https://doi.org/ 10.1007/s10763-019-10003-6 Different
Powell, S. R., Kearns, D. M., & Driver, M. K. (2016). Exploring the connection between arithmetic and prealgebraic reasoning at first and second grade. Journal of Educational Psychology, 108(7), 943–959. https://doi.org/10.1037/edu0000112
Samo, M. A. (2009). Students’ Perceptions about the Symbols, Letters and Signs in Algebra and How Do These Affect Their Learning of Algebra: A Case Study in a Government Girls Secondary School Karachi. International Journal for Mathematics Teaching and Learning, 35.
Stacey, K., & Macgregor, M. (2001). Curriculum Reform and Approaches to Algebra. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on School Algebra (Vol. 22, pp. 141–153). Springer. https://doi.org/10.1007/0-306-47223-6_8
Steinweg, A. S., Akinwunmi, K., & Lenz, D. (2018). Making Implicit Algebraic Thinking Explicit : Exploiting National Characteristics of German Approaches. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds, ICME-13 Monographs (pp. 283–307). Springer International Publishing AG. https://doi.org/ 10.1007/978-3-319-68351-5_12
Sugiman, Sumadyono, & Marfuah. (2016). Karakteristik Siswa SMP dan Bilangan (N. Priatna, Y. Anggraena, & S. Wardhani (eds.)). Direktorat Jendral Guru dan Tenaga Kependidikan Kementerian Pendidikan dan Kebudayaan.
Tiwari, C., & Fatima, R. (2019). Secondary School Students’ Misconceptions in Algebra Concepts. Mahatma Gandhi Central University Journal of Social Sciences, 1(1).
Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of Algebra. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education: The Journey Continues (pp. 73–108). Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mosharafa: Jurnal Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.