Enhancing TPACK and Statistical Literacy through Generative AI–Based Adaptive Learning: A Mixed-Methods Study
DOI:
https://doi.org/10.31980/mosharafa.v15i1.3491Keywords:
Pembelajaran adaptif, GenAI (Chat GPT), Literasi statistika, Pendidikan guru, TPACK, Adaptive learning, Statistical literacy, Teacher educationAbstract
Penelitian ini mengkaji dampak kerangka pembelajaran adaptif terintegrasi Generative Artificial Intelligence (GenAI; ChatGPT) terhadap peningkatan Technological Pedagogical and Content Knowledge (TPACK) dan literasi statistis calon guru matematika. Kerangka tersebut menerapkan interaksi dialogis berbasis mahasiswa, structured prompting, dan scaffolding dosen untuk mempersonalisasi eksplorasi statistika. Dengan desain kuasi-eksperimen mixed methods, penelitian melibatkan 72 mahasiswa (37 kelompok eksperimen dan 35 kontrol). Data kuantitatif dianalisis menggunakan uji t berpasangan dan ANCOVA, sedangkan data kualitatif dianalisis secara tematik. Hasil menunjukkan kedua kelompok meningkat secara signifikan, namun kelompok eksperimen memiliki skor akhir tersesuaikan yang lebih tinggi. Temuan kualitatif menegaskan peningkatan pemahaman konseptual, kemampuan desain pembelajaran berbasis teknologi, serta refleksi kritis terhadap etika penggunaan AI. Studi ini mendukung integrasi literasi AI dalam kurikulum pendidikan guru.
This study examines the impact of a Generative Artificial Intelligence (GenAI; ChatGPT)–integrated adaptive learning framework on improving Technological Pedagogical and Content Knowledge (TPACK) and statistical literacy among prospective mathematics teachers. The framework employed student-driven dialogic interaction, structured prompting, and lecturer-guided scaffolding to personalize statistical exploration. Using a mixed-methods quasi-experimental design, 72 students participated (37 experimental, 35 control). Quantitative data from tests and questionnaires were analyzed using paired t-tests and ANCOVA, while interviews and observations underwent thematic analysis. Results showed significant gains in both groups, but the experimental group achieved higher adjusted posttest scores, indicating superior effectiveness of GenAI-integrated learning. Qualitative findings highlighted improved conceptual understanding, instructional design skills, and critical reflection on ethical AI use. The study supports embedding AI literacy and pedagogically grounded prompting within teacher-education curricula and institutional policy.
References
Aydın, B., & Bozkurt, A. (2023). AI in teacher education. Online Learning Journal.
Ben-Zvi, D., & Garfield, J. (2020). Developing Students’ Statistical Reasoning. Springer.
Bholanath, et al. (2023). Pre-service teachers’ challenges in statistics learning with technology. International Journal of STEM Education.
Chen, et al. (2022). AI to support data analysis skill development. Educational Data Science Journal.
Frontiers. (2023). AI and digital learning environments. Frontiers in Education.
Gal, I. (2020). Understanding statistical literacy: A conceptual approach. International Statistical Review.
Garcia, & W. (2023). Using AI to strengthen statistical reasoning. Journal of Mathematics Learning.
ISTE. (2023). AI in Education Standards. ISTE.
Jones, M. (2023). AI-assisted data interpretation for students. Education and Information Technologies2023.
Kasneci, E., et al. (2023). ChatGPT in education: Applications and challenges. Computers and Education: AI.
Koh, J., Chai, C.S., & Tsai, C. C. (2020). TPACK and teacher readiness in digital learning. Computers & Education.
Kurnia, S., Lowrie, T., & Patahuddin, S. (2024). Technology-enhanced mathematics learning in the era of Industry 4.0. Educational Studies in Mathematics.
Lee, H. (2023). AI-based feedback in teacher education. Computers & Education.
Liu, et al. (2024). Generative AI for personalized learning. Educational Technology Research & Development.
Mishra, P., & Koehler, M. (2006). Technological Pedagogical Content Knowledge: A framework for teacher knowledge. Teachers College Record, Vol. 108, No. 6.
Niess, M. (2022). Preparing teachers to teach mathematics with technology. Contemporary Issues in Technology and Teacher Education.
O’Neil, J., & Schmidt, J. (2022). AI-assisted lesson planning. Journal of Teacher Education.
Pamuk, S., et al. (2022). Pre-service teachers’ TPACK readiness. Journal of Educational Technology & Society.
Patel, S. (2023). Generative AI for teacher training. Journal of Educational Innovation.
Rahmawati, & L. (2022). Statistical reasoning skills of secondary mathematics teachers. Jurnal Riset Pendidikan.
Reddy, V. et al. (2022). Digital transformation in the fourth industrial revolution,”. Journal of Technology and Innovation.
Ridgway, J. (2016). Statistical literacy for the 21st century. Statistics Education Research Journal.
Rizkallah, E., & Seaman, M. (2024). Data literacy in modern mathematics education. Journal of Mathematics Teacher Education.
Rudolph, J., et al. (2023). Critical thinking issues in AI-supported learning. Computers & Education,.
Sari, et al. (2023). Statistical literacy of Indonesian pre-service mathematics teachers. Jurnal Pendidikan Matematika.
Smith, A., and Kumar, R. (2023). AI-supported adaptive learning for pre-service teachers. Teaching and Teacher Education.
UNESCO. (2021). AI Competency Framework for Teachers.
UNESCO. (2023). AI and Education: Guidance for Policy-makers.
van der Meijden, A., & Veenman, M. (2023). Collaboration and AI integration in teacher education. Teaching and Teacher Education.
Zawacki-Richter, O., et al. (2023). Systematic review of AI in higher education. International Journal of Educational Technology in Higher Education.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mosharafa: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.