Binary Representation of the Weaving Motifs of Rumah Bubungan Tinggi: An Ethnomathematical Exploration for Discrete Mathematics Learning

Authors

  • Arifin Riadi Universitas PGRI Kalimantan https://orcid.org/0000-0002-7191-0891
  • Turmudi Turmudi Universitas Pendidikan Indonesia
  • Dadang Juandi Universitas Pendidikan Indonesia
  • Jarnawi Afgani Dahlan Universitas Pendidikan Indonesia
  • Rolina Amriyanti Ferita Universitas Nahdlatul Ulama Kalimantan Selatan

DOI:

https://doi.org/10.31980/mosharafa.v14i4.3471

Keywords:

ethnomathematics, weaving patterns, binary sequences, discrete mathematics, steganography, etnomatematika, motif anyaman, barisan biner, matematika diskret, steganografi

Abstract

Motif anyaman pada dinding anjung Rumah Bubungan Tinggi menampilkan pola berulang yang dapat dimodelkan sebagai barisan biner. Penelitian eksploratif kualitatif ini merepresentasikan orientasi bilah sebagai digit 1 dan 0, kemudian menganalisis periodisitas, memformulasikan aturan berbasis modulo, serta melakukan konversi biner–desimal–karakter untuk menautkan motif tradisional dengan struktur pengodean informasi digital. Hasil menunjukkan motif membentuk barisan biner deterministik berperiode tertentu yang dapat dijelaskan melalui fungsi modulo. Berdasarkan pemetaan digit–arah bilah, disusun pula model konseptual steganografi: penyisipan pesan biner melalui variasi orientasi bilah tanpa mengubah karakter visual motif. Temuan ini menegaskan potensi motif anyaman sebagai media representasi informasi sekaligus konteks budaya untuk pembelajaran matematika diskret melalui tugas bertahap (pengodean motif, identifikasi unit ulang/periode, penurunan aturan modulo, dan konversi bilangan).

Motif weaving on the anjung wall of the Rumah Bubungan Tinggi exhibits repeating patterns that can be modeled as binary sequences. This qualitative exploratory study encodes strip orientation as 1 and 0, then examines periodicity, formulates modulo-based rules, and performs binary–decimal–character conversions to connect traditional motifs with the basic structure of digital information encoding. The results show that the motifs form deterministic binary sequences with specific periods that can be described using modulo functions. Based on digit-to-orientation mapping, the study also proposes a conceptual motif-based steganography model: embedding binary messages through variations in strip orientation without altering the motif’s overall visual character. These findings highlight the potential of weaving motifs as both an information representation medium and a cultural context for discrete mathematics learning through stepwise tasks (motif encoding, identification of repeating units/periods, derivation of modulo rules, and number conversion).

References

Amit, M., & Abu Qouder, F. (2017). Weaving Culture and Mathematics in the Classroom: The Case of Bedouin Ethnomathematics. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 23–50). Springer International Publishing. https://doi.org/10.1007/978-3-319-59220-6_2

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241. https://doi.org/10.1023/A:1024312321077

Arnesen, K. K., & Skartsæterhagen, Ø. I. (2025). Mathematical induction in education research: A systematic review. Educational Studies in Mathematics, 119(1), 79–100. https://doi.org/10.1007/s10649-024-10373-x

Arribay, L. (2025). Teaching Mathematics through Traditional Weaving Patterns: A Cultural Heritage Integration Model. International Journal on Culture, History, and Religion, 7(SI3), 75–89.

Bailey, K., & Curran, K. (2006). An evaluation of Image Based Steganography Methods. Multimedia Tools and Applications, 30(1), 55–88. https://doi.org/10.1007/s11042-006-0008-4

Denning, P. J., & Tedre, M. (2019). Computational thinking. Mit Press.

diSessa, A. A. (2018). Computational Literacy and “The Big Picture” Concerning Computers in Mathematics Education. Mathematical Thinking and Learning, 20(1), 3–31. https://doi.org/10.1080/10986065.2018.1403544

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z

Enmufida, Turmudi, & Hidayat, A. S. (2021). Study Ethnomathematics: Revealing Mathematics Ideas on Minangkabau Traditional Weaving Songkets in Pandai Sikek. Journal of Physics: Conference Series, 1806(1), 012054. https://iopscience.iop.org/article/10.1088/1742-6596/1806/1/012054/meta

Evsutin, O., Melman, A., & Meshcheryakov, R. (2020). Digital Steganography and Watermarking for Digital Images: A Review of Current Research Directions. IEEE Access, 8, 166589–166611. https://doi.org/10.1109/ACCESS.2020.3022779

Gerdes, P. (1999). Geometry from Africa: Mathematical and Educational Explorations (Vol. 10). American Mathematical Soc.

Gerdes, P. (2003). Awakening of Geometrical Thought in Early Culture. MEP Publications.

Hidayati, F. N., & Prahmana, R. C. I. (2022). Ethnomathematics’ Research in Indonesia During 2015-2020. Indonesian Journal of Ethnomathematics, 1(1), 29–42.

Ho, Y.-A., Chan, Y.-K., Wu, H.-C., & Chu, Y.-P. (2009). High-capacity reversible data hiding in binary images using pattern substitution. Computer Standards & Interfaces, 31(4), 787–794.

Holub, V., & Fridrich, J. (2013). Digital Image Steganography Using Universal Distortion. Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, 59–68. https://doi.org/10.1145/2482513.2482514

Hoyles, C., Kieran, C., Rojano, T., Sacristán, A. I., & Trigueros, M. (2020). Reflections on Digital Technologies in Mathematics Education Across Cultures. Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 69–92. https://doi.org/10.51272/pmena.42.2020-1

Hunter, J. (2021). An Intersection of Mathematics Educational Values and Cultural Values: Pāsifika Students’ Understanding and Explanation of Their Mathematics Educational Values. ECNU Review of Education, 4(2), 307–326. https://doi.org/10.1177/2096531120931106

Komalasari, A. (2021). Developing 21st Century Education and Digital Literacy Skills Through Intercultural City Stories Project. PIONEER: Journal of Language and Literature, 13(1), 1–15.

Le Roux, K., & Swanson, D. (2021). Toward a Reflexive Mathematics Education within Local and Global Relations: Thinking from Critical Scholarship on Mathematics Education within the Sociopolitical, Global Citizenship Education and Decoloniality. Research in Mathematics Education, 23(3), 323–337. https://doi.org/10.1080/14794802.2021.1993978

Lestari, L., Maryati, I., Sundayana, R., & Afriansyah, E. A. (2022). Kajian literatur: Implementasi Realistic Mathematics Education (RME) pada kemampuan representasi matematis. Math Didactic: Jurnal Pendidikan Matematika, 8(1), 58-70.

Li, M., Wang, Y., & Xu, Y.-Q. (2022). Computing for Chinese Cultural Heritage. Visual Informatics, 6(1), 1–13.

Lubis, A., & Nasution, A. A. (2017). How Do Higher-Education Students Use Their Initial Understanding to Deal with Contextual Logic-Based Problems in Discrete Mathematics? International Education Studies, 10(5), 72. https://doi.org/10.5539/ies.v10n5p72

Madruga, Z. E. D. F. (2022). Ethnomodelling as a Methodological Alternative to Basic Education: Perceptions of Members of a Research Group. In M. Rosa, F. Cordero, D. C. Orey, & P. Carranza (Eds), Mathematical Modelling Programs in Latin America (pp. 53–69). Springer International Publishing. https://doi.org/10.1007/978-3-031-04271-3_3

Magda, D., & Gardner-McCune, C. (2025). Students’ Thoughts on Discrete Mathematics: Insights for Practice and Implications for Future Research. Proceedings of the 56th ACM Technical Symposium on Computer Science Education V. 1, 736–741. https://dl.acm.org/doi/abs/10.1145/3641554.3701948

Mainali, B. (2021). Representation in teaching and learning mathematics. International Journal of Education in Mathematics, Science and Technology, 9(1), 1–21.

Medina, M. A., Gerofsky, S., & Nicol, C. (2024). Weaving Indigenous Mathematics: Bringing Indigenous Ways and Stories into Conversation with Ethnomathematics. In C. Nicol, G. Knijnik, A. Peng, M. Cherinda, & A. Bose (Eds), Ethnomathematics and Mathematics Education (pp. 77–100). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-60680-9_5

Mardia, A., Zulkardi, Z., Putri, R. I. I., & Kamid, K. (2025). A Systematic Analysis of Effective Math Trail Characteristics in Mathematics Learning: A Literature Review. Mosharafa: Jurnal Pendidikan Matematika, 14(3), 823–840. https://doi.org/10.31980/mosharafa.v14i3.3314

Maulandani, S., & Afriansyah, E. A. (2024). Mathematical Reasoning Skills Review of Student Self-Regulated Learning in Number Pattern. Plusminus: Jurnal Pendidikan Matematika, 4(1), 27–46. https://doi.org/10.31980/plusminus.v4i1.1685

Niemi, H., Niu, S., Vivitsou, M., & Li, B. (2018). Digital Storytelling for Twenty-First-Century Competencies with Math Literacy and Student Engagement in China and Finland. Contemporary Educational Technology, 9(4), 331–353.

Nur, A. S., Waluya, S. B., Rochmad, R., & Wardono, W. (2020). Contextual Learning with Ethnomathematics in Enhancing the Problem Solving Based on Thinking Levels. Journal of Research and Advances in Mathematics Education, 5(3), 331–344.

Patterson, D. A., & Hennessy, J. L. (2016). Computer Organization and Design ARM Edition: The Hardware Software Interface. Morgan kaufmann.

Polycarpou, I. (2006). Computer science students’ difficulties with proofs by induction: An exploratory study. Proceedings of the 44th Annual Southeast Regional Conference, 601–606. https://doi.org/10.1145/1185448.1185579

Putra, M., Novita, R., & Usman, U. (2025). Friends or Foe? Secondary Students’ Perceptions of Mathematics in Acehnese Cultural Contexts. Plusminus: Jurnal Pendidikan Matematika, 5(2), 197–208. https://doi.org/10.31980/plusminus.v5i2.2904

Putri, A. R. H., Wiryanto, W., Ekawati, R., & Srinivasarao, U. (2024). The Implementation of Ethnomathematics-Based Student Worksheet “Surya Majapahit” on the Circle Elements Material to Build Creative Thinking of Elementary Students. IJORER: International Journal of Recent Educational Research, 5(6), 1522–1541.

Qolbi, A. N., & Afriansyah, E. A. (2024). Capacity for mathematical literacy reviewing the learning style. Journal of Authentic Research on Mathematics Education (JARME), 6(1), 94-113.

Rayuwati, Mustapa, M., Taliang, A., & Iskandar, A. (2019). Comparison of Encoding and Decoding Methods for Binary Files. Journal of Physics: Conference Series, 1364(1), 012024. https://doi.org/10.1088/1742-6596/1364/1/012024

Riadi, A., Turmudi, T., & Juandi, D. (2024). Trends of Ethnomathematics Research in Indonesia: A Bibliometric Analysis from the Scopus Database. Mosharafa: Jurnal Pendidikan Matematika, 13(2), 401–414. https://doi.org/10.31980/mosharafa.v13i2.1499

Roesdiana, L., Turmudi, T., Juandi, D., Suhendra, S., & Dahlan, J. A. (2025). Meta-Synthesis: Ethnomathematics in Educational and Cultural Contexts Over the Last Decade. Mosharafa: Jurnal Pendidikan Matematika, 14(2), 413–432. https://doi.org/10.31980/mosharafa.v14i2.2257

Rosa, M., & Orey, D. C. (2011). Ethnomathematics: The Cultural Aspects of Mathematics. Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de La Educación Matemática, 4(2), 32–54.

Rosa, M., & Orey, D. C. (2013). Ethnomodelling as a Methodology for Ethnomathematics. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds), Teaching Mathematical Modelling: Connecting to Research and Practice (pp. 77–88). Springer Netherlands. https://doi.org/10.1007/978-94-007-6540-5_6

Rosa, M., & Orey, D. C. (2019). Ethnomodelling as the Art of Translating Mathematical Practices. For the Learning of Mathematics, 39(2), 19–24.

Rosa, M., & Orey, D. C. (2024). Exploring Cultural Dynamism of Ethnomodelling as a Pedagogical Action for Students from Minority Cultural Groups. ZDM – Mathematics Education, 56(3), 423–434. https://doi.org/10.1007/s11858-023-01539-7

Saironi, M. (2022). Learning with Ethnomathematics Based Open Ended Approach Improves Creative Thinking Ability, Curiosity Character. Jurnal Sosial Teknologi, 2(11), 999–1007.

Sajedi, H. (2016). Steganalysis based on Steganography Pattern Discovery. Journal of Information Security and Applications, 30, 3–14.

Samo, D. D., Darhim, D., & Kartasasmita, B. (2017). Culture-Based Contextual Learning to Increase Problem-Solving Ability of First Year University Student. Journal on Mathematics Education, 9(1), 81–94. https://doi.org/10.22342/jme.9.1.4125.81-94

Sari, A., Putri, R. I. I., & Prahmana, R. C. I. (2024). Ethnomathematics in Indonesian Woven Fabric: The Promising Context in Learning Geometry. Mathematics Teaching Research Journal, 16(5), 157–185.

Schüler-Meyer, A. (2019). How Do Students Revisit School Mathematics in Modular Arithmetic? Conditions and Affordances of the Transition to Tertiary Mathematics with a Focus on Learning Processes. International Journal of Research in Undergraduate Mathematics Education, 5(2), 163–182. https://doi.org/10.1007/s40753-019-00088-3

Septia, T., Handayani, U. F., & Ramadhan, M. R. (2024). Study of Javanese Cultural Weton Significance Through Falak Science: An Ethnomathematical Analysis. Plusminus: Jurnal Pendidikan Matematika, 4(1), 17–26. https://doi.org/10.31980/plusminus.v4i1.1644

Sharma, T., & Orey, D. C. (2017). Meaningful Mathematics Through the Use of Cultural Artifacts. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 153–179). Springer International Publishing. https://doi.org/10.1007/978-3-319-59220-6_7

Thiyagarajan, P., Aghila, G., & Venkatesan, V. P. (2010). Dynamic Pattern Based Image Steganography. Journal of Computing, 2(8). https://doi.org/10.48550/arXiv.1206.2583

Wang, T., Xie, Q., Yu, L., Pan, Z., & Zhang, M. (2025). A survey of binary code representation technology. Frontiers of Information Technology & Electronic Engineering, 26(5), 671-694.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Zhao, J. (2024). Digital Protection and Inheritance Path of Intangible Cultural Heritage based on Image Processing Algorithm. Scalable Computing: Practice and Experience, 25(6), 4720–4728.

Downloads

Published

2025-10-30

How to Cite

Riadi, A., Turmudi, T., Juandi, D., Dahlan, J. A., & Ferita, R. A. (2025). Binary Representation of the Weaving Motifs of Rumah Bubungan Tinggi: An Ethnomathematical Exploration for Discrete Mathematics Learning. Mosharafa: Jurnal Pendidikan Matematika, 14(4), 919–934. https://doi.org/10.31980/mosharafa.v14i4.3471

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.